LECTURE 3: VERSION
CONTROL SYSTEMS

Computer Systems and
Networks

Dr. Pallipuram
(vpallipuramkrishnamani@pacific.edu)




Lab Schedule

Today
o Lab 2 — Version Control

Next Week
° C programming
o Lab 3 — Build Tools



Before Version Control

<Report.doc> 7. <Report-2a.doc>

<Report.doc.bak> 8. <Report-2a-WITH-

REFERENCES.doc>
<Report-1.doc>

_ 9. Email off to partner...
Email off to partner... Partner responds with new doc

<Report-2.doc> <Report-3.doc>

Partner responds with doc 10. <Report-3-FINAL.doc>
(that is missing the changes 11. <Report-3-FINAL_v1.doc>

you just made)
12. Report-3-FINAL v2.doc>
13. Report-3-FINAL_ forsure.doc>
14. Report-3-FINAL_forsure_vl.doc>

SRR A



Motivation for Version Control

Why would a single programmer (working alone)
use version control?

> Backup files

> Roll-back to earlier (working) version

> See changes made between current (broken) code and
earlier (working) code

> Experiment with a new feature
° Try a risky change in a “sandbox”

o If it works, you can merge it into the regular code.
If it fails, you can throw it away.



Motivation for Version Control

Why would a small group of developers use
version control?

> All the reasons a single programmer would,
plus...

> Merging different changes made by different
developers into the same file
o Git keeps track of it using the concept of changesets

> What changed? where? Moved where in the file?



Motivation for Version Control

Why would a large group of developers use
version control?

Different question: Could you develop the Linux
kernel, Adobe Photoshop, Google Chrome, etc...
using:

> A single shared “folder of code”?

> Emailing code snippets between developers?

o Everyone sits around and shares one keyboard?



Version Control Basics

What kind of files should | keep in version
control?

> Program source code (obviously)

>\VHDL / Verilog files (from digital design class)

> Matlab scripts (from DSP and Image Processing)
o HTML files

> Server configuration files

° Imagine you work at Livermore National Labs, and your job is to
manage Linux cluster computers with 100,000+ machines (nodes)...

> Anything that is plain text!




Version Control Basics

What kind of files should | not keep in version
control?

o These aren’t “rules”, so much as “guidelines”...

> Binary data

> How do you merge two different binary files together? No general-purpose
way to do this

> Anything auto-generated by the compiler

> Object files or executable file
o Wastes space on useless junk that can be re-created automatically

> Text editor temp files (e.g. main.c~)



Problem 1: How are these
VCSs different? Google ‘em!

Git

Mercurial

SVN



Universe 1: Centralized Version
Control SVN

svn commit



Universe 2: Distributed Version
Control Git




Git Command Flow (usually)

1. git clone <repository address>
a. #getrepo on your desktop

2. git add <filenames> #always specify a filename to add
a. #add new files and make changes

3. git commit -m <meaningful commit message>
a. #commit to your repo. Also use —a to commit changed files

b. Make changes and repeat 3
4. git push #All done? Let everyone see



Problem 2: Google Search for
Git Cheat Sheet(s)




Version Control in ECPE 170

Version control required for this class
o Used to distribute boilerplate code for labs
o Used to turn in assignments when finished

If you only do one check-in at the very end of your
project, you've missed the whole point of version
control, and turned a valuable tool into an
obstacle to completing the assignment

Check-in code on a

reiular basis!







THISIS GIT IT TRACKS COLLABORATIVE. LIORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

{ COOL. HOU DO WE.USE. IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM TO SYNC VR
IF YOU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE PROJECT,
AND DOWNLOAD A FRESH COPY.

\
o




https://dzone.com/
articles/top-20-git-
commands-with-
examples




In-class Participation

Collaborate with only one class member to answer in-class
participation questions



