
Computer Systems and
Networks

LECTURE 17: MIPS (LAB 11,
12)

Dr.	Pallipuram		
(vpallipuramkrishnamani@pacific.edu)	

University of the Pacific

You can do almost everything
just using these

Arithmetic Instructions
add <destination register>, <register 1>, <register 2>
sub <destination register>, <register 1>, <register 2>

mul <destination register>, <register 1>, <register 2>

Branching Instructions
beq <register 1>, <register 2>, label
bgt <register 1>, <register 2>, label
blt <register 1>, <register 2>, label
ble <register 1>, <register 2>, label
bge <register 1>, <register 2>, label

addi <destination register>, <register 1>, value

Memory Instructions
la <register>, memory lw/sw <register>, offset(base)

Functions

The Program Counter
Instructions are stored in memory sequentially

Each MIPS32 instruction occupies 4 bytes

How does the processor know from where to fetch the next
instruction?

A special 32-bit register called Program Counter (PC) holds
the address of the next instruction

Program Execution – Program
Counter (PC)

Instructions are stored in memory and each occupy 4 bytes.
Address	 Instruction	

4	 addi $t0,$zero,0

8	 addi $t1,$zero, 2

12	 bge $t0, $t1, <label to addr.
24>

16	 addi $t0, $t0, 1

20	 j <label to addr. 12>

24	 li $v0, 10

28	 syscall

PC

Reverse
engineer:
Write a C

code for this
assembly

Program Execution – Program
Counter (PC)

Instructions are stored in memory and each occupy 4 bytes.
Address	 Instruction	

4	 addi $t0,$zero,0

8	 addi $t1,$zero, 2

12	 bge $t0, $t1, <label to addr.
24>

16	 addi $t0, $t0, 1

20	 j <label to addr. 12>

24	 li $v0, 10

28	 syscall

PC

Program Execution – Program
Counter (PC)

Instructions are stored in memory and each occupy 4 bytes.
Address	 Instruction	

4	 addi $t0,$zero,0

8	 addi $t1,$zero, 2

12	 bge $t0, $t1, <label to addr.
24>

16	 addi $t0, $t0, 1

20	 j <label to addr. 12>

24	 li $v0, 10

28	 syscall

PC

Program Execution – Program
Counter (PC)

Instructions are stored in memory and each occupy 4 bytes.
Address	 Instruction	

4	 addi $t0,$zero,0

8	 addi $t1,$zero, 2

12	 bge $t0, $t1, <label to addr.
24>

16	 addi $t0, $t0, 1

20	 j <label to addr. 12>

24	 li $v0, 10

28	 syscall

PC

Program Execution – Program
Counter (PC)

Instructions are stored in memory and each occupy 4 bytes.
Address	 Instruction	

4	 addi $t0,$zero,0

8	 addi $t1,$zero, 2

12	 bge $t0, $t1, <label to addr.
24>

16	 addi $t0, $t0, 1

20	 j <label to addr. 12>

24	 li $v0, 10

28	 syscall

PC

Program Execution – Program
Counter (PC)

Instructions are stored in memory and each occupy 4 bytes.
Address	 Instruction	

4	 addi $t0,$zero,0

8	 addi $t1,$zero, 2

12	 bge $t0, $t1, <label to addr.
24>

16	 addi $t0, $t0, 1

20	 j <label to addr. 12>

24	 li $v0, 10

28	 syscall

PC

Program Execution – Program
Counter (PC)

Instructions are stored in memory and each occupy 4 bytes.
Address	 Instruction	

4	 addi $t0,$zero,0

8	 addi $t1,$zero, 2

12	 bge $t0, $t1, <label to addr.
24>

16	 addi $t0, $t0, 1

20	 j <label to addr. 12>

24	 li $v0, 10

28	 syscall

PC

Program Execution – Program
Counter (PC)

Instructions are stored in memory and each occupy 4 bytes.
Address	 Instruction	

4	 addi $t0,$zero,0

8	 addi $t1,$zero, 2

12	 bge $t0, $t1, <label to addr.
24>

16	 addi $t0, $t0, 1

20	 j <label to addr. 12>

24	 li $v0, 10

28	 syscall

PC

Program Execution – Program
Counter (PC)

Instructions are stored in memory and each occupy 4 bytes.
Address	 Instruction	

4	 addi $t0,$zero,0

8	 addi $t1,$zero, 2

12	 bge $t0, $t1, <label to addr.
24>

16	 addi $t0, $t0, 1

20	 j <label to addr. 12>

24	 li $v0, 10

28	 syscall

PC

Program Execution – Program
Counter (PC)

Instructions are stored in memory and each occupy 4 bytes.
Address	 Instruction	

4	 addi $t0,$zero,0

8	 addi $t1,$zero, 2

12	 bge $t0, $t1, <label to addr.
24>

16	 addi $t0, $t0, 1

20	 j <label to addr. 12>

24	 li $v0, 10

28	 syscall

PC

Program Execution – Program
Counter (PC)

Instructions are stored in memory and each occupy 4 bytes.
Address	 Instruction	

4	 addi $t0,$zero,0

8	 addi $t1,$zero, 2

12	 bge $t0, $t1, <label to addr.
24>

16	 addi $t0, $t0, 1

20	 j <label to addr. 12>

24	 li $v0, 10

28	 syscall PC

Functions in MIPS

Basic Functions in MIPS
1. Program saves the context (registers) of calling function (caller)

3. Program calls the callee via jump-and-link instruction

jal <function label>

jal saves the address of the next instruction in return address reg., $ra

Program Counter (PC) points to the callee’s location. Callee saves
return values in regs. $v0-$v1

2. Program saves the arguments in registers ($a0 - $a3)

4. Callee returns via jump register instruction,

jr sets PC to $ra. PC continues there onwards
jr <register name> #usually $ra

Function Execution
Instructions are stored in memory and each occupy 4 bytes.

Address	 Instruction	

4	 addi $a0, $zero, 5 #argument 5

8	 jal <function at 20>

12	 li $v0, 10

16	 syscall

20	
function:	

add $v0, $a0, $a0 #return value v0

24	 jr $ra

28	

PC

Function Execution
Instructions are stored in memory and each occupy 4 bytes.

Address	 Instruction	

4	 addi $a0, $zero, 5 #argument 5

8	 jal <function at 20>

12	 li $v0, 10

16	 syscall

20	
function:	

add $v0, $a0, $a0 #return value v0

24	 jr $ra

28	

PC

$ra=12

Function Execution
Instructions are stored in memory and each occupy 4 bytes.

Address	 Instruction	

4	 addi $a0, $zero, 5 #argument 5

8	 jal <function at 20>

12	 li $v0, 10

16	 syscall

20	
function:	

add $v0, $a0, $a0 #return value v0

24	 jr $ra

28	

PC

$ra=12

Function Execution
Instructions are stored in memory and each occupy 4 bytes.

Address	 Instruction	

4	 addi $a0, $zero, 5 #argument 5

8	 jal <function at 20>

12	 li $v0, 10

16	 syscall

20	
function:	

add $v0, $a0, $a0 #return value v0

24	 jr $ra

28	

PC

$ra=12

Function Execution
Instructions are stored in memory and each occupy 4 bytes.

Address	 Instruction	

4	 addi $a0, $zero, 5 #argument 5

8	 jal <function at 20>

12	 li $v0, 10

16	 syscall

20	
function:	

add $v0, $a0, $a0 #return value v0

24	 jr $ra

28	

PC

$ra=12

Function Execution
Instructions are stored in memory and each occupy 4 bytes.

Address	 Instruction	

4	 addi $a0, $zero, 5 #argument 5

8	 jal <function at 20>

12	 li $v0, 10

16	 syscall

20	
function:	

add $v0, $a0, $a0 #return value v0

24	 jr $ra

28	

PC

$ra=12

More Jumps
	 Jump	and	Link	
(side	effect:	$ra	stores	address	of	next	instruction)	

	 Jump	Register	
(destination	address	is	stored	in	<reg1>	

	

jal <destination>

jr <reg1>

Use this to call a function!

Use this to return from a function!

Problem 1: Write Code
	 Place	arguments		
in	$a0-$a3

	 Place	return	values	
in	$v0-$v1

	 Return	address	saved	
automatically	in	$ra

	 Ignore	the	stack	for	this	example.	
(Thus,	the	function	will	destroy	
registers	used	by	calling	function)	

#include <stdio.h>

int function(int a);

int main()
{
 int x=5;
 int y;

 y = function(x);
 printf(“y:%d”,y);
 return 0;
}

int function(int a)
{
 return 3*a+5;
}

What if…

Callee needs some of the registers ($s0 - $s9) to compute
and these were already in use by the caller?

Stack to the rescue!

Callee calls another function, overwriting the return address,
$ra?

How Stack Operates
Stack is a Last In, First Out (LIFO) data structure

Address	 Value	

20	

16	

12	

8	

4	

2 3 4 5

$sp

How Stack Operates
Stack is a Last In, First Out (LIFO) data structure

Address	 Value	

20	 5	

16	

12	

8	

4	

2 3 4

$sp
push 5

How Stack Operates
Stack is a Last In, First Out (LIFO) data structure

Address	 Value	

20	 5	

16	 4	

12	

8	

4	

2 3 $sp

push 4

How Stack Operates
Stack is a Last In, First Out (LIFO) data structure

Address	 Value	

20	 5	

16	 4	

12	 3	

8	

4	

2

$sp

push 3

How Stack Operates
Stack is a Last In, First Out (LIFO) data structure

Address	 Value	

20	 5	

16	 4	

12	 3	

8	 2	

4	

$sp

push 2

How Stack Operates
Stack is a Last In, First Out (LIFO) data structure

Address	 Value	

20	 5	

16	 4	

12	 3	

8	 2	

4	

$sp

pop 2

2

How Stack Operates
Stack is a Last In, First Out (LIFO) data structure

Address	 Value	

20	 5	

16	 4	

12	 3	

8	 2	

4	

$sp

pop 3

2 3

How Stack Operates
Stack is a Last In, First Out (LIFO) data structure

Address	 Value	

20	 5	

16	 4	

12	 3	

8	 2	

4	

$sp
pop 4

2 3 4

How Stack Operates
Stack is a Last In, First Out (LIFO) data structure

Address	 Value	

20	 5	

16	 4	

12	 3	

8	 2	

4	

$sp
pop 5

2 3 4 5

Problem 2: Using $sp, write the
set of commands for pushing and
popping a register value (say $s0)

What a caller must do with the
Stack prior to function call?

Must use the stack if:
it wants to store temporary registers ($t0-$t9) or
its argument registers ($a0-$a3) onto the stack.
This is done before calling another function

it wants to pass arguments via stack. For our
purposes, a registers should suffice

After return, it should pop the stack

What a callee must do with
the stack?
1. Push $s registers onto the stack, so that it does not
overwrite the caller’s data
 2. Push $ra onto the stack because a callee may
call another function, overwriting the return
address.

4. Pop $ra from the stack

5. Pop $s registers from the stack

3. Do function stuff

Caller and Callee MIPS portion

	 Caller	

	 <some code>
	 <push t and a regs. in use>

	 <pass args using a regs>

	 jal callee
	 <pop t and a regs.>

	 <some code>

	 Callee	

	 <push s regs. used by caller>

	 <push ra>

	 <some code>

	 <pop ra>

	 <pop s regs. used by caller>

	 <save return values in v regs>

	 jr $ra

Problem 3: Convert this to
MIPS

int array[] = {2, 3, 4, 5, 6};
int main() {
int num, position;
scanf(“%d”,&num);
position = search(array, num, 5);
printf(“\n The position is: %d”,position);
}
int search(int *array, int num, int size)
{

 int position =-1;
 for(int i=0;i<size;i++)
 if(array[i]==num)
 { position=i;
 break;}
 return position;

}

Register map:
$s0:num
$s1: position
$a0: array addr.
$a1: num
$a2: size
$v0: return val.

Aggressive context saving
As your code gets larger, it may be too difficult to keep track of
registers in use

Do not want to remember too much?
•  Have the caller save all of the t and a registers!
•  Have the callee save all of the s and r registers!

Pro: guaranteed to work, if implemented correctly

Con: longer program footprint. OK for our programs

Aggressive context saving
Caller and Callee MIPS portion

	 Caller	Portion	
	 <some code>

	 <aggressively push t and a
regs>

	 <pass args in a regs>

	 jal callee
	 <aggressively pop a and t
regs.>

	 <some code>

	 Callee	Portion	

	 Callee:

	 <aggressively push s regs.>

	 <push ra>

	 <callee code>

	 <pop ra>

	 <aggressively pop s regs.>

	 <save return values in v regs>

	 jr $ra

Some tips if you want to
perform Aggressive Saving

Create a text file that contains stub for:
•  Aggressive pushing and popping of t,a-registers. Use it for the caller

portion
•  Aggressive saving and popping of s,ra-registers. Use it for the

callee portion
•  Copy and paste and have fun!

