
Computer Systems and
Networks

LECTURE 16: MIPS (FOR LABS
10, 11)

Dr.	Pallipuram		
(vpallipuramkrishnamani@pacific.edu)	

University of the Pacific

Some Deadlines

Lab 7 Hard deadline: NOV 22nd
Lab 8 Hard deadline: NOV 25th

Lab 10 soft deadline (before penalty starts): NOV 27th

Class Today

Arrays and memory variables in MIPS

Coding: Lab 8, 9, and 10

 # Declare main as a global function
 # Pound is for comments
 .globl main
 # All program code is placed after the
 # .text assembler directive
 .text

The label 'main' represents the starting point
main:

 #fill out main here

Exit program by syscall
 li $v0, 10 # select exit syscall
 syscall # Exit the program
 Assembler directive .data
 .data
Reserves space in memory for word with initial value 0
used to store Z in memory
Z: .word 0

USE THIS CODE AS A STUB. Also on
Lab 10 Page (a link)

In-Class Participation: 10
minutes

main(){int sum=0,i=10;
while(1)
{

 sum=sum+i;
 i--;
 if(i<=0)
 break;
 else
 continue;

}
}

Assume	Map:	
$s0	=	sum	
$s1	=i	

Use as many registers
Currently, your computer only

understands add, sub, and some
branching.

Today’s MIPS

Declaring memory values and loading/storing them

Handling arrays in MIPS

MIPS labs

Declaring Memory Values in
MIPS

All of the memory values are declared in the .data
section of the code

example (int z = 12):
Z: .word 12 #to declare a 32-bit word & set to 12

example (int array[64] or char array[256]):
array: .space 256 #to create a space of
256 bytes, Can be 64 integers or 256 chars

example (char msg[] = “Hello world!”):
msg: .asciiz “Hello world!” #to create a string
message

Memory Fundamentals

MIPS	cannot	directly	manipulate	data	
in	memory!	

	
Data	must	be	moved	to	a	register	first!	
(And	results	must	be	saved	to	a	register	

when	finished)	

This is a common design in RISC-style machines: a load-store
architecture

Memory Fundamentals

Yes,	it’s	a	pain	to	keep	moving	data	
between	registers	and	memory.	

	
But	consider	it	your	motivation	to	
reduce	the	number	of	memory	
accesses.	That	will	improve	
program	performance!	

CPU	

Memory – Fundamental
Operations
LOAD	

	 Copy	data	from		
memory	to	register	

STORE	

	 Copy	data	from		
register	to	memory	

CPU	Memory	 Memory	

Loading and Storing memory
values

Load (Copy a value from memory variable to register):
lw <destination register>, memory_var
E.g.: lw $s0, A

Store (Copy a value from register to memory):
sw <source register>, memory_var
E.g.: sw $s0, C

Problem 1: A complete
program

Declare memory variables, A and B, initialized to 20 and 45,
respectively. Declare a space of 4 bytes for a variable, C. In
main, set C to sum of A and B

.globl main

.text
main: #Main goes here

li $v0, 10 #v0 argument set to 10 for
#system call “exit”
syscall
.data #data goes under

Accessing Arrays

Array Recap
Name of the array is the address of the very first value.
E.g.:
int array[20];
printf(“Address of the first element:%u”,array);

Values are spaced by the size of the data. Integers are spaced
by 4 bytes, doubles are spaced by 8 bytes, etc.

int array[20];
printf(“Address of the first element:
%u”,&array[0]); //say it prints 65530
printf(“Address of the second element:
%u”,&array[1]); //prints 65534

Accessing Arrays
Base offset addressing:
A[5], array[i], etc.

A[0]	 A[1]	 A[2]	 A[3]	 A[4]	 A[5]	 A[6]	 A[7]	 A[8]	 A[9]	

10	 14	 18	 22	 26	 30	 34	 38	 42	 46	
 A:

address:
Base

offset=5

Pointer arithmetic:
int array[10];
printf(“\n array[5]:%u”,*(array+5)); //adds 20
bytes to base address to access array[5]

pointer arithmetic done w.r.t
data size

Problem 2 – Revisit basics
Write a C for loop to print the values of a 1-D array of size
N using:
1.  indexed addressing
2.  Pointer arithmetic

C vs. MIPS
C has the following format:
base[offset]

C compiler multiplies the
offset
with the size of the data to
compute the correct offset in
bytes

MIPS has the following format:
offset(<register
storing base addr.>)

In MIPS, YOU multiply the
offset with size of the data to
compute the correct offset
 in bytes

MIPS – Base Offset Addressing
Load (Copy a value from memory to register):
lw <destination register>, <constant offset in
bytes>(<register that stores base address>)
E.g.:

Store (Copy a value from register to memory):
sw <source register>, <constant offset in
bytes>(<register that stores base address>)
E.g.:

lw $s0, 20($s1) #load $s0 with a value stored
#at an offset of 20 bytes from the base address in $s1

sw $s0, 20($s1) #store $s0 at an offset of 20 bytes
from base address in $s1

MIPS – Base Offset Addressing
Load byte (Copy a value from memory to register):
lb <destination register>, <constant offset in
bytes>(<register that stores base address>)
E.g.:

 lb $s0, 20($s1) #load an 8-bit value stored at
an offset of 20 bytes from base address in $s1

 Store byte (Copy a value from register to memory):
sb <source register>, <constant offset in
bytes>(<register that stores base address>)
E.g.:

 sb $s0, 20($s1) #store 8-bit $s0 at an offset
of 20 bytes from base address in $s1

Problem 3 – Base Offset
addressing
	 Write	MIPS	assembly	for:	

array[12]	=	h	+	array[8]	
(Array	of	words.	Assume	h	is	in	register)	

Map:	
$s2	=	h	
$s3	=	base	address	of	array	
$t1	=	temp	

Problem 4 – Pointer
Arithmetic
	 Write	MIPS	assembly	for:	

g	=	h	+	array[i]	
(Array	of	words.	Assume	g,	h,	and	i	are	in	

registers)	

Map:	
$s1	=	g	
$s2	=	h	
$s3	=	base	
address	of	
array	
$s4	=	i	

How do I get the address of an
array declared in .data
section?

Load Address:
la <destination register to store the address>,
arrayname

E.g: la $s0, array #s0 stores the starting
address of the array

Problem 5 – Base-Offset and
Pointer Arithmetic

//memory variable
int array[7];
int main()
{

 int i=0; //use register
 array[0]=5;array[1]=4;
 for(i=2;i<7;i++)
 array[i] = array[i-2] + array[i-1];

}

 Open a file called problem5.asm and use the stub to
write this program (this lecture is on Webpage)

Read

MIPS example on I/O. See Lab 10 > MIPS Examples

MIPS_RandomGenerator.txt gives you solution for
(random_in_range() and get_random()) in Lab 11.
Carefully read and adapt it

find instructions for multiplication, division, and bit
shifting:
http://ecs-network.serv.pacific.edu/ecpe-170/tutorials/
mips-instruction-set

