
Computer Systems and
Networks

LECTURE 15: MIPS (FOR LAB
10)

Dr.	Pallipuram		
(vpallipuramkrishnamani@pacific.edu)	

University of the Pacific

MIPS Partner Workout (for class
problems only)
Steve	 Richard	 Tejpal	 Kenny	 Kevin	 Terry	 Yode	 Beau	 Miguel	

Jason	L	 Rakan	 Cassidy	 Jose	 Angela	 Greg	 Sonali	 Alex	 Andrew	

Hoang	 Thor	 Carl		 George	 Jerry	 Janet	 Jason	
VB	

Lovejot	 Colton		

Performance on the next three worksheets will lead to a max.
of 5 points credit on Labs 10, 11, and 12. Points awarded =
function(overall team performance)

whiteboard	

Class Today

MIPS Practice for Lab 10

Class to Date

Human	
(C	Code)	

	

Compiler		
(Assembly	
code)	

Compiler		
(Object	file	/	
binary	code)	

Linker		
(Executable	
program)	

Class Now

Human	
(Assembly	
code)	

Assembler	
(Object	file	/	
binary	code)	

Linker		
(Executable	
Program)	

MIPS Background
Microprocessor without Interlocked Pipeline Stages

Embedded devices
Cisco/Linksys routers
Cable boxes
MIPS processor is buried inside System-on-a-Chip (SOC)

Gaming / entertainment
Nintendo 64
Playstation, Playstation 2, PSP

MIPS Design
	 RISC	–	What	does	this	mean?	
◦ Reduced	Instruction	Set	Computing	
◦ Simplified	design	for	instructions	
◦ Use	more	instructions	to	accomplish	same	task	
◦  But	each	instruction	runs	much	faster!	

	 32	bits	(originally)	–	What	does	this	mean?	
◦ 1	“word”=	32	bits	
◦ Size	of	data	processed	by	an	integer	add	instruction	
◦ New(er)	MIPS64	design	is	64	bits,	but	we	won’t	focus	
on	that	

Why should I learn MIPS?
Computer Science majors -- Compilers optimize assembly
to improve performance. One day, you’ll develop such efficient
compilers

ECPE majors -- Assembly language will help you design
Microcontroller applications. One day, you may be the coder
for a microcontroller that goes on a space mission

CS and ECPE majors -- You will collaborate and develop the
next-generation processors

ISA Definition
Instruction Set Architecture is an interface between
hardware and software

Instruction Set Architecture defines format for arithmetic/
logic instructions, addressing instructions, and branching
instructions. We will broadly divide ISA into these classes:

Arithmetic instructions
Branching instructions
Addressing instructions

Recap of a typical Processor
We	will	actively	use	registers	to	fetch	data	and	perform	ALL	

arithmetic	and	logic	computations	

CPU	

ALU	

1.   Registers	
ì  On	the	CPU	itself	
ì  Very	close	to	ALU	
ì  Tiny	
ì  Access	time:	1	cycle	

2.   Memory	
ì  Off-chip	
ì  Large	
ì  Access	time:	100+	cycles	

Cache	 Memory	

registers
Load values into registers and try
performing everything with them

Registers in MIPS
	 MIPS	design:	32	integer	registers,	each	holding	32	bits	
◦  “Word	size”	=	32	bits	

This	is	only	19	–	where	are	the	rest	of	the	32?	
◦  Reserved	by	convention	for	other	uses	
◦ We’ll	learn	a	few	more	later…	

Name	 Use	

$zero Constant	value:	ZERO	

$s0-$s7 Local	variables	

$t0-$t9 Temporary	registers	

Arithmetic
Instructions

Add Instructions
Add (perform addition using registers)
add <destination> <source 1> <source 2>
E.g.:

 add $t0, $s1, $s2 #t0 = s1 + s2
 add $s1, $s1, $s2 #s1 = s1 + s2

Add Immediate
addi <destination> <source 1> <signed value>
E.g.:

 addi $s0, $s1, -2 #s0 = s1 - 2
 addi $s1, $s1, 1 #s1++
 addi $t1, $zero, 6 # t1 = 6

Sub Instructions
Sub (perform addition using registers)
sub <destination> <source 1> <source 2>
E.g.:

 sub $t0, $s1, $s2 #t0 = s1 - s2
 sub $s1, $s1, $s2 #s1 = s1 - s2

Problem 1: Convert this
snippet to assembly

g = 15;
h = 20;
i = 5;
j= 18;
f = (g + h) – (i+j);

Assume	Map:	
$s0	=	g	
$s1	=	h	
$s2	=	i	
$s3	=	j	
$s4	=	f	

Currently, your computer only knows add and sub
instructions!

Branching
Instructions
ASSEMBLY FOR IF-ELSE, FOR, WHILE, AND SUCH..

How would you explain this to
a 2nd grader?

if((A>=B) || A>6)
 C=A;

else
 C=B-A;

//outside if-else

if-else statements and loops result in branching of control

Branching Instructions
Branch on equal:
beq <register 1>, <register 2>, label #if
register 1 is equal to register 2, then branch to label.

Branch on not equal:
bne <register 1>, <register 2>, label #if
register 1 is not equal to register 2, then branch to
label.

Branch on greater than:
bgt <register 1>, <register 2>, label #if
register 1 is greater than register 2, then branch to
label.

Branching Instructions
Branch on greater than equal to:
bge <register 1>, <register 2>, label #if
register 1 is greater than or equal to register 2, then
branch to label.
Branch on less than:
blt <register 1>, <register 2>, label #if
register 1 is less than register 2, then branch to label.

Branch on less than or equal to:
ble <register 1>, <register 2>, label #if
register 1 is less than or equal to register 2, then
branch to label.

Branching Instructions
Unconditional jump to a label:
j label #just jump to this label and proceed there onwards

Problem 2: Convert the
following to Assembly

if((A>=B) || A>6)
 C=A;

else
 C=B-A;

Assume	Map:	
$s0	=	C	
$s1	=	A	
$s2	=	B	

Currently, your computer only
understands add, sub, and some

branching.

Problem 3: Convert the
following to Assembly

sum=0;
for(i=0;i<10;i++)
{

 sum+=i;
}

Assume	Map:	
$s0	=	sum	
$t0	=	i	

Currently, your computer only
understands add, sub, and some

branching.

Problem 4: Convert the
following to Assembly

sum=0;
for(i=0;i<10;i++)
{

 j=i;
 while(j<2*i)
 {
 sum=sum+j;
 j++;
 }

}

Assume	Map:	
$s0	=	sum	
$s1	=	i	
$s2	=	j	

Currently, your computer only
understands add, sub, and some

branching.

In-Class Participation: 10
minutes

while(1)
{

 sum=sum+i;
 i--;
 if(i<=0)
 break;
 else
 continue;

}
Assume	Map:	

$s0	=	sum	
$s1	=i	

Use as many registers
Currently, your computer only

understands add, sub, and some
branching.

You are prepared
for Lab 10 Parts 1,
2, and 3
MAKE PROGRESS ON THESE UNTIL NEXT CLASS

 # Declare main as a global function
 # Pound is for comments
 .globl main
 # All program code is placed after the
 # .text assembler directive
 .text

The label 'main' represents the starting point
main:

 #fill out main here

Exit program by syscall
 li $v0, 10 # select exit syscall
 syscall # Exit the program
 Assembler directive .data
 .data
Reserves space in memory for word with initial value 0
used to store Z in memory
value: .word 0

USE THIS CODE AS A STUB. Also on
Lab 10 Page (a link)

Storing a value in Memory
In the end of the stub, note a .data section

E.g.:

.data
value: .word 0 # a word set to zero
msg: .asciiz "Hello World!\n” #a string
pow2: .word 1, 2, 4, 8, 16, 32, 64, 128
#an initialized array of integers

Next Class – MIPS for Labs 10
and 11

Arrays and memory accesses in Assembly

Writing Functions in assembly

For Next Class

Carefully go through MIPS example programs (see Lab 10
page). Teach yourself:
•  printf in MIPS
•  scanf in MIPS

Finish SPIM tutorial on Lab 10 page. In the next class, I will
assume you know your way around SPIM

