
Computer Systems and
Networks

LECTURE 14: UDP AND
PROGRAMMING TIPS

Dr.	Pallipuram		
(vpallipuramkrishnamani@pacific.edu)	

University of the Pacific

UDP versus TCP
TCP	 UDP	

Reliable?	 Yes	
(Via	acknowledgments	and	
retransmitting)	

No	

Connection-
oriented?	

Yes	
(Server	has	one	socket	per	
client)	

No	
(Server	has	one	socket	and	all	
messages	from	all	clients	are	
received	on	it)	

Programming	
model?	

Stream	
(continuous	flow	of	data	–	
may	get	a	little	bit	at	a	time)	

Datagram	
(data	is	sent	in	its	entirety	or	not	at	
all.	Size	of	each	datagram	is	small)	

Applications	 HTTP	(Lab	8)	
Web,	email,	file	transfer	

DNS	(Lab	9)	
Streaming	Audio/Video,	Gaming	

TCP/IP sends the message as a
stream

Client

Network

host: www.google.com Socket

port: 80

socket()
connect(host, port)

Create message

10010101010101101010100101010101010010100010101010111

UDP sends the message as a
whole chunk called Datagram

Client

Network

host: www.google.com Socket

port: 53

socket()

Create message

datagram

User Datagram Protocol (UDP)
	 Each	UDP	message	is	self-contained	and	complete	
	 Each	time	you	read	from	a	UDP	socket,	you	get	the	
complete	message	as	sent	by	the	sender 		
◦ That	is,	assuming	it	wasn’t	lost	in	transit!	

	 Think	of	UDP	sockets	as	putting	a	stamp	on	a	letter	and	
sticking	it	in	the	mail	
◦ No	need	to	establish	a	connection	first	
◦ Receiver	has	no	idea	“letter”	is	arriving	until	they	look	in	the	
mailbox	

Python UDP Programming
	 Two	new	functions:	sendto()	and	recvfrom()
server_ip = 1.2.3.4
port = 5678
dest_addr = (server_ip, port)
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
...
...
bytes_sent = s.sendto(raw_bytes, dest_addr)
...
...
max_bytes = 4096
(raw_bytes, src_addr) = s.recvfrom(max_bytes)

let’s focus on its construction

You receive raw_bytes in a single shot. No need to set up a loop!

Warm Up with WireShark

dig www.stanford.edu:

dig www.stanford.edu A @8.8.8.8 +noedns

 Monitor the packets using WireShark. Inspect the query packet
sent from you and write the values for Transaction ID, flags,
Question, Answer RRs, Additional RRs, Query, type, and class.

NOTE: In dns.py, you will create query packets that look very
much like the above!

Several ways to
create Query
packet

#1 – explicitly append bytes to
an array of bytes

Query Packet:
Field Bytes Value

Transaction ID 2 Random value, you choose!

Flags 2 0x 01 20
Questions 2 0x 00 01
Answer RRs 2 0x 00 00

 : :
Query variable, but each char is 1B

 Type 2 0x 00 01 (A) 0x 00 1c (AAAA)
Class 2 0x 00 01

Create array of bytes using
bytearray()

bytearray() returns an array of bytes.

>>>raw_bytes=bytearray() #try it

You can do lot of neat stuff with byte arrays:
•  Append hexadecimal byte (for constant message fields):

raw_bytes.append(0xfe) #append fe. try it
•  Concatenate strings as bytes (for the query):

>>>string_bytes=bytes(string,’ascii’)
>>>raw_bytes+=string_bytes

Google search Python’s in-built
ord function and write what it
does. How can you use it in Lab
09?

Exercise 1: Encode qname
Create a string qname (query name) and assign it to
engineering.pacific.edu. Create a byte array called
raw_string, which prints as under. Make sure to append
0x00 in the end (why?). Print it. For a query name
engineering.pacific.edu, the output should look like this:

>>> print(raw_string)
bytearray(b'\x0bengineering\x07pacific\x03edu\
x00')

 Note the similarity with the query section when you

captured the DNS query using WireShark!

It is so straightforward!

In our UDP messages, all of the values are under 255. The
lengths of the subdomains were also less than 255

Open the python3 interpreter and do the following:
•  declare a byte array called message
•  Try appending the value 1024. Successful?

Need something else to be able to append values
that take up more than one byte!

#2 -- The struct Module
	 Two	main	functions	in	the	struct	module	
◦ pack:	convert	a	group	of	variables	into	an	array	of	bytes	
◦ unpack:	convert	an	array	of	bytes	into	a	group	of	
variables	

	 Similar	to	C’s	printf and	scanf 	
	 Each	function	requires	a	format	string	to	describe	
how	to	pack	or	unpack	the	arguments	

The struct Module
	 Common	format	string	options:	
◦  See	https://docs.python.org/3/library/struct.html		

	 >>>import	struct	

	
	

	 >>>val1=50

	 >>>val2=1024

	 >>>raw_bytes = struct.pack("BH", val1, val2)

	 >>>print(raw_bytes) #what do you see? What is the endianness?

	 >>>(val1, val2) = struct.unpack("BH", raw_bytes)

Format	 Python	Type	 Size	(bytes)	

B	 Integer	 1	

H	 Integer	 2	

L	 Integer	 4	

Q	 Integer	 8	

The struct Module
	 Endianness	must	be	considered	when	doing	file	or	network	I/O	with	
fields	greater	than	one	byte	

	 The	first	character	of	the	format	string	determines	the	endianness	

Character	 Byte	order	 Size	 Alignment	

@	 Native	 Native	 Native	

=	 Native	 Standard	 None	

<	 Little	 Standard	 None	

>	 Big	 Standard	 None	

!	 Network	(Big)	 standard	 None	

DNS Endianness
	 What	endianness	is	your	computer?	
◦  Little	endian	(x86)	

	 What	endianness	is	the	DNS	protocol?	
	(or	most	network	protocols)	
◦  Big	endian	

	 What	fields	in	the	DNS	header	does	this	matter	for?	
◦  Two-byte	integer	fields	
(question	count,	answer	count,	etc…)	

◦  You	can	explicitly	append	these	bytes	in	big	endian	format	

You can also pack a string

1. Strings need to be packed as bytes, so convert them to
bytes first. Use bytes()

2. raw_bytes=
struct.pack(‘!<length of string>s’,bytestring)

Try Packing engineering.pacific.edu by:
•  converting it to bytes using bytes()
•  use struct.pack as in 2 above

Receiving UDP message from
the server

Import the dns class from dns_tools.py (see boilerplate
code for lab09). Use decode_dns function to decode
the UDP message.

One function call and that’s it!

In-Class Participation
Pull the boilerplate and find dummy_query.py inside the
Practice folder. Inspect first few lines to see sample usage.
Create a dummy request called raw_bytes as in the
diagram. Use qname=“www.google.com”

A	randomly	chosen	
Transaction	ID	(2	

Bytes)	

Encoded	qname	
with	0x	00	in	the	

end	
(variable	bytes)	

TYPE	(2	Bytes)	
0x	00	01	if	qtype	is	A	

0x	00	1c	if	qtype	is	AAAA	

FLAGS	(2	
Bytes)	set	to		
0x	01	20	

Get 5 extra points on in-class participation if you can
perform it using the struct module alone

Bit Fields
	 Warning!	struct	only	deals	with	bytes.	It	cannot	handle	fields	with	
dimensions	less	than	one	byte	

	 Problem	–	Some	of	the	DNS	fields	(FLAGS)	are	composed	of	1	bit,	3	bits,	or	4	
bits	fields	

	 How	can	we	handle	this?	
◦  Manual	bit	shifting	using	ctypes	

QR | OPCODE | AA | TC | RD | RA | Resvd | RCODE
(1) (4) (1) (1) (1) (1) (3) (4)

2 bytes (16 bits)
FLAGS

CTypes

import ctypes

Define a 2-byte structure (equivalent to a 'uint16' variable in C)
class CustomStruct(ctypes.BigEndianStructure):
 fields = [
 ("fieldA", ctypes.c_uint16, 1), # 1-bit field - Most Sig BIT
 ("fieldB", ctypes.c_uint16, 6), # 6-bit field
 ("fieldC", ctypes.c_uint16, 4), # 4-bit field
 ("fieldD", ctypes.c_uint16, 5) # 5-bit field - Least SIG BIT
]

Create new instance of the 'CustomStruct' data type
special_variable = CustomStruct()

Access the fields of the structure
special_variable.fieldA = 1
special_variable.fieldB = 18
special_variable.fieldC = 5
special_variable.fieldD = 17

CTypes

Print out individual fields
print("Field A = %i" % special_variable.fieldA)
print("Field B = %i" % special_variable.fieldB)
print("Field C = %i" % special_variable.fieldC)
print("Field D = %i" % special_variable.fieldD)

Convert the structure to a byte array and print it out
print(bytes(special_variable))

Alternate printing method (won't decode bytes as ASCII)
hex_string = "".join("%02x " % b for b in bytes(special_variable))
print("0x%s" % hex_string)

