LECTURE 16: MIPS MEMORY
ADDRESSING

Computer Systems and
Networks

Dr. Pallipuram
(vpallipuramkrishnamani@ pacific.edu)

mailto:vpallipuramkrishnamani@pacific.edu

Some Deadlines

Lab 10 November 11t

Lab 11 November 19t

Class Today

Arrays and memory variables in MIPS

Coding: Lab 10

USE THIS CODE AS A STUB. Also on
Lab 10 Page (a link)

Declare main as a global function

Pound is for comments

.globl main

All program code is placed after the

.text assembler directive

.Lext
The label 'main' represents the starting point
main:

#£ill out main here

Exit program by syscall
1i Sv0, 10 # select exit syscall
syscall # Exit the program
Assembler directive .data
.data
Reserves space in memory for word with initial value O
used to store Z in memory
Z: .word O

Today’s MIPS

Declaring memory values and loading/storing them

Handling arrays in MIPS

Declaring Memory Values in
MIPS

All of the memory values are declared in the .data
section of the code

example (intZ =12):
7 .word 12 #to declare a 32-bit word & setto 12

example (int array[64] or char array[256]):
array: .space 256#to create a space of 256
bytes, Can be 64 integers or 256 chars

example (char msg[] = “Hello world!”):
msg: .asciiz “Hello world!” #to create a string

messaie

Memory Fundamentals

MIPS cannot directly manipulate data
in memory!

Data must be moved to a register first!
(And results must be saved to a register
when finished)

This is a common design in RISC-style machines: a load-store

Memory Fundamentals

Yes, it’s a pain to keep moving data
between registers and memory.

But consider it your motivation to

reduce the number of memory
accesses. That will improve
program performance!

Memory — Fundamental

Operations
LOAD STORE
Copy data from Copy data from

memory to register register to memory

Loading and Storing memory
values

Load (Copy a value from memory variable to register):
lw <destilination register>, memory var

E.g.: lw $s0, A

Store (Copy a value from register to memory):
sw <source reglster>, memory var

E.g.: sw $s0, C

Problem 1: A complete
program

Declare memory variables, A and B, initialized to 20 and 45,

respectively. Declare C and initialize it to 0. In main, set C to
sum of Aand B

.globl main
.Lext
main: #Main goes here

1i $v0, 10 #v0 argument set to 10 for
fsystem call “exit”
syscall

.data #data goes under

Accessing Arrays

Array Recap

Name of the array is the address of the very first value.

E.Q.
int array[20];
printf ("Address of the first element:%u”,array);

Values are spaced by the size of the data. Integers are spaced
by 4 bytes, doubles are spaced by 8 bytes, etc.

int array[20];

printf ("Address of the first

element:%u”, &array[0]); //say it prints 65530

printf (Y"Address of the second
element:%u”, &array[l]); //prints 65534

Accessing Arrays

Base offset addressing:
A[5], arrayl[i], etc.

A; mmmmm AlS] | Al7] | AL8] | Al9]
34 38 42 46

address: 10 3
Base

>
e

offset=5

Pointer arithmetic: pointer arithmetic done w.r.t
int array[10]; data size

printf (“\n array[5]:%u”, * (array+5)); //adds 20
bytes to base address to access array|[5]

C vs. MIPS

C has the following format: MIPS has the following format:
base[offset] offset (<register

storing base addr.>)

C compiler multiplies the

offset |
with the size of the data to In MIPS, YOU multiply the

compute the correct offset in offset with size of the data to
bytes compute the correct offset

In bytes

MIPS — Base Offset Addressing

Load (Copy a value from memory to register):
lw <destination register>, <constant offset in

bytes> (<register that stores base address>)

E.g.:

1w $Ss0, 20($sl) #load $s0 with a value stored

fat an offset of 20 bytes from the base address in S$sl

Store (Copy a value from register to memory):
sw <source register>, <constant offset in

bytes> (<register that stores base address>)

E.g.:
sw $s0, 20($sl) #store $s0 at an offset of 20 bytes

from base address in S$sl

MIPS — Base Offset Addressing

Load byte (Copy a value from memory to register):
lb <destination register>, <constant offset in
bytes> (<register that stores base address>)
E.g.:

1b $s0, 20($sl) #load an 8-bit value stored at
an offset of 20 bytes from base address in $sl

Store byte (Copy a value from register to memory):
sb <source register>, <constant offset in
bytes> (<register that stores base address>)
E.g.:
sb $s0, 20($sl) #store 8-bit $sO0 at an offset
of 20 bytes from base address in S$sl

Problem 3 — Base Offset
addressing

Write MIPS assembly for:

array[12] = h + array[8]

(Array of words. Assume h is in register)

Map:
Ss2=h
Ss3 = base address of array
Stl = temp

Problem 4 — Pointer
Arithmetic

Write MIPS assembly for:

g = h + array|i]
(Array of words. Assume g, h, and i are in
registers)

Map:
Ssl=g
Ss2=h
Ss3 = base
address of
array
Ss4 =i

How do | get the address of an
array declared in .data
section?

Load Address:

la <destination register to store the address>,
arrayname

FE.g: la $s0, array #s0 stores the starting
address of the array

Problem 5 — Base-Offset and
Pointer Arithmetic

//memory variable
int arrayl[7/];
int main ()

{

int i=0; //use register
array[0]=5;
for (i=1;i<7;i++)

array[1] += arrayl[i-1];

Read

MIPS example on I/O. See Lab 10 > MIPS Examples

MIPS RandomGenerator.txt gives you solution for

(random in range () and get random())in Lab 11.
Carefully read and adapt it

find instructions for multiplication, division, and bit
shifting:

http://ecs-network.serv.pacific.edu/ecpe-
170/tutorials/mips-instruction-set

http://ecs-network.serv.pacific.edu/ecpe-170/tutorials/mips-instruction-set

