
ì
Computer Systems and Networks
ECPE 170 – Dr. Pallipuram– University of the Pacific

Memory Hierarchy
(Performance Optimization)

Slides are courtesy of Dr. Shafer



Lab Schedule

Activities
ì Labs

ì Lab 6 – Perf Optimization
ì Lab 7 – Memory Hierarchy

Assignments Due
ì Lab 6

ì Due by OCT 17th 5 PM

ì ** Video Presentation #1 **
ì Released TODAY!
ì Due OCT 14th 11:59pm

Fall 2021Computer Systems and Networks

2



Video Presentation #1

ì Prepare a 8-10 minute recorded video demonstrating “lab-like” technical skills

ì Topics chosen from Lab 1 – Lab 5

ì The recording should include both your computer monitor and your video and 
voice as a narrator

ì Graded for both technical accuracy and communication skills
ì Technical Content (50% of grade) – Does the video provide correct technical 

information?
ì Verbal Explanation (50% of grade) – Does the video explain why an action is being 

taken, in sufficient detail for an engineering student who has not yet taken ECPE 170?

Fall 2021Computer Systems and Networks

3

A video that presents perfect technical content but has no explanation about 
what is being done or why it is being done, will only receive half credit.



ì
Recap

Computer Systems and Networks

4

Fall 2021



Malloc – 1D

int *array;  //array of integers

array = (int *)malloc(sizeof(int)*5);

60 64 68 72 76

array[0] array[1] array[2] array[3] array[4]

address:

value:

array (pointer variable)

value: ????

pointer addr: 32

Computer Systems and Networks

5

60

Fall 2021



Malloc – 2D 
Allocate 4x5 integers 

int **array; //a double pointer

array = (int **)malloc(sizeof(int *)*4);

for(i=0;i<4;i++)
array[i] = (int *)malloc(sizeof(int)*5);

an array of integer pointers

array of ints

array of ints

array of ints

array of ints

Computer Systems and Networks

6

Fall 2021



Malloc – 3D
int ***array; //a triple pointer

an array of 
double pointers

a matrix of
single pointers

a ‘cuboid’ of integers

Computer Systems and Networks

7

Fall 2021



Problem 1 – Array Addresses

ì Write a C code snippet to print the addresses of 
elements in a 2-D array:  array[row][col]
Visit this array in row-major format (row 0, then 
row 1, and so on..)

Fall 2021Computer Systems and Networks

8

P1



ì
Memory Hierarchy

Computer Systems and Networks

9

Fall 2021



Memory Hierarchy

Computer Systems and Networks

10

Fast Performance and Low Cost

Goal as system designers: 

Tradeoff: Faster memory is 
more expensive than slower memory

Fall 2021



Memory Hierarchy

ì To provide the best performance at the lowest cost, 
memory is organized in a hierarchical fashion
ì Small, fast storage elements are kept in the CPU
ì Larger, slower main memory are outside the CPU 

(and accessed by a data bus)
ì Largest, slowest, permanent storage (disks, etc…) 

is even further from the CPU

11

Computer Systems and Networks Fall 2021



Computer Systems and Networks

12

To date, you’ve only 
cared about two 
levels: Main 
memory and Disks

Fall 2021



Computer Systems and Networks

13

Let’s examine the 
fastest memory 
available

Fall 2021



Memory Hierarchy – Registers

ì Storage locations available on the processor itself

ì Manually managed by the assembly programmer or 
compiler

ì You’ll become intimately familiar with registers 
when we do assembly programming

Computer Systems and Networks

14

Fall 2021



Memory Hierarchy – Caches

ì What is a cache?
ì Speed up memory accesses by storing recently used

data closer to the CPU
ì Closer than main memory – on the CPU itself!
ì Although cache is much smaller than main memory, 

its access time is much faster!
ì Cache is automatically managed by the hardware 

memory system
ì Clever programmers can help the hardware use the 

cache more effectively

15

Computer Systems and Networks Fall 2021



Memory Hierarchy – Caches

ì How does the cache work?
ì Not going to discuss how caches work internally

ì If you want to learn that, take ECPE 173!

ì This class is focused on what does the programmer 
need to know about the underlying system

Computer Systems and Networks

16

Fall 2021



Memory Hierarchy – Access

ì CPU wishes to read data (needed for an instruction)
1. Does the instruction say it is in a register or 

memory?
ì If register, go get it!

2. If in memory, send request to nearest memory 
(the cache)

3. If not in cache, send request to main memory
4. If not in main memory, send request to the disk

17

Computer Systems and Networks Fall 2021



(Cache) Hits versus Misses

Hit
ì When data is found at a 

given memory level 
(e.g. a cache)

Miss
ì When data is not found at a 

given memory level
(e.g. a cache)

Computer Systems and Networks

18

You want to write 
programs that produce a 

lot of hits, not misses!

Fall 2021



Cache Example

ì Hypothetical cache for pseudocode that reads all 
elements of a[]

Computer Systems and Networks

19

for(i=0; i<30; i++)
{
a[i];

}

Fall 2021



CPU
Registers

Cache

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

a[10] a[11] a[12] a[13] a[14] a[15] a[16] a[17] a[18] a[19]

a[20] a[21] a[22] a[23] a[24] a[25] a[26] a[27] a[28] a[29]

Main memory 
(RAM)

How does CPU get array elements
a[0], a[1], a[2], …?

for(i=0;i<30;i++)
a[i];

Cache line is 16 bytes. 
Space for 4 integers per 
line.

Computer Systems and Networks

20

Fall 2021



CPU
Registers

Cache

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

a[10] a[11] a[12] a[13] a[14] a[15] a[16] a[17] a[18] a[19]

a[20] a[21] a[22] a[23] a[24] a[25] a[26] a[27] a[28] a[29]

Main memory 
(RAM)

Access a[0]

Cache line is 16 bytes. 
Space for 4 integers per 
line.

Computer Systems and Networks

21

?

1. Query the Cache for a[0]
2. Result:  a[0] not present – Cache Miss!
3. Fetch a[0] and entire cache line from main 

memory

Fall 2021



Memory Hierarchy – Cache

ì Once the data is located and delivered to the CPU, it will 
also be saved into cache memory for future access
ì We often save more than just the specific byte(s) 

requested

ì In this example: cache line width is 16 bytes (space for 4 
integers), providing 3 hits for every 4 integers
ì If cache width is for m integers and the data access is 

contiguous, then only 1 miss for every m integer accesses
ì Typical on modern CPUs: Cache line size is 64 bytes

22

Computer Systems and Networks Fall 2021



Cache Locality

Computer Systems and Networks

23

Once a data element is accessed, it is likely 
that a nearby data element (or even the 

same element) will be needed soon

Principle of Locality

Fall 2021



CPU
Registers

a[0] a[1] a[2] a[3]

Cache

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

a[10] a[11] a[12] a[13] a[14] a[15] a[16] a[17] a[18] a[19]

a[20] a[21] a[22] a[23] a[24] a[25] a[26] a[27] a[28] a[29]

Main memory 
(RAM)

Cache line is 16 bytes. 
Space for 4 integers per 
line.

Computer Systems and Networks

24

1. Access a[1] – Cache Hit!
2. Access a[2] – Cache Hit!
3. Access a[3] – Cache Hit!

Fall 2021



CPU
Registers

a[0] a[1] a[2] a[3]

Cache

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

a[10] a[11] a[12] a[13] a[14] a[15] a[16] a[17] a[18] a[19]

a[20] a[21] a[22] a[23] a[24] a[25] a[26] a[27] a[28] a[29]

Main memory 
(RAM)

Access a[4]

Cache line is 16 bytes. 
Space for 4 integers per 
line.

Computer Systems and Networks

25

?

1. Query the Cache for a[4]
2. Result:  a[4] not present – Cache Miss!
3. Fetch a[4] and entire cache line from main 

memory

Fall 2021



CPU
Registers

a[0] a[1] a[2] a[3]

a[4] a[5] a[6] a[7] Cache

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

a[10] a[11] a[12] a[13] a[14] a[15] a[16] a[17] a[18] a[19]

a[20] a[21] a[22] a[23] a[24] a[25] a[26] a[27] a[28] a[29]

Main memory 
(RAM)

Cache line is 16 bytes. 
Space for 4 integers per 
line.

Computer Systems and Networks

26

1. Access a[5] – Cache Hit!
2. Access a[6] – Cache Hit!
3. Access a[7] – Cache Hit!

Fall 2021



Cache Locality

ì Spatial locality - Accesses tend to cluster in 
memory
ì Imagine scanning through all elements in an array, 

or running several sequential instructions in a 
program

ì Temporal locality – Recently-accessed data 
elements tend to be accessed again
ì Imagine a loop counter…

27

Computer Systems and Networks Fall 2021



ì
In Class Cache Simulation

Spring 2021Computer Systems and Networks

28



Problem 2

ì On a computer system with a cache line width of 16 
bytes, how many cache hits will this code get? 
Assume sizeof(int) is 4.

Fall 2021Computer Systems and Networks

29

int a[24];
int sum=0;
for(i=0;i<24;i=i+4)
{
sum += a[i];

}

P2Stride!



CPU
Registers

Cache

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

a[10] a[11] a[12] a[13] a[14] a[15] a[16] a[17] a[18] a[19]

a[20] a[21] a[22] a[23] a[24] a[25] a[26] a[27] a[28] a[29]

Main memory 
(RAM)

Access a[0]

Cache line is 16 bytes. 
Space for 4 integers per 
line.

Computer Systems and Networks

30

?

1. Query the Cache for a[0]
2. Result:  a[0] not present – Cache Miss!
3. Fetch a[0] and entire cache line from main 

memory

Fall 2021



CPU
Registers

a[0] a[1] a[2] a[3]

Cache

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

a[10] a[11] a[12] a[13] a[14] a[15] a[16] a[17] a[18] a[19]

a[20] a[21] a[22] a[23] a[24] a[25] a[26] a[27] a[28] a[29]

Main memory 
(RAM)

Access a[4]

Cache line is 16 bytes. 
Space for 4 integers per 
line.

Computer Systems and Networks

31

?

1. Query the Cache for a[4]
2. Result:  a[4] not present – Cache Miss!
3. Fetch a[4] and entire cache line from main 

memory

Fall 2021



CPU
Registers

a[0] a[1] a[2] a[3]

a[4] a[5] a[6] a[7] Cache

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

a[10] a[11] a[12] a[13] a[14] a[15] a[16] a[17] a[18] a[19]

a[20] a[21] a[22] a[23] a[24] a[25] a[26] a[27] a[28] a[29]

Main memory 
(RAM)

Access a[8]

Cache line is 16 bytes. 
Space for 4 integers per 
line.

Computer Systems and Networks

32

?

1. Query the Cache for a[8]
2. Result:  a[8] not present – Cache Miss!
3. Fetch a[8] and entire cache line from main 

memory

Fall 2021



Computer Systems and Networks

33

Programs with good 
locality run faster than 

programs with poor 
locality

Fall 2021



Computer Systems and Networks

34

A program that randomly 
accesses memory addresses 
(but never repeats) will gain 

no benefit from a cache

Fall 2021



Cache Example – Intel Core i7 980x

ì 6 core processor with a sophisticated multi-level 
cache hierarchy

ì 3.5GHz, 1.17 billion transistors

Computer Systems and Networks

35

Fall 2021



Cache Example – Intel Core i7 980x

ì Each processor core has its own a L1 and L2 cache
ì 32kB Level 1 (L1) data cache
ì 32kB Level 1 (L1) instruction cache
ì 256kB Level 2 (L2) cache (both instruction and data)

ì The entire chip (all 6 cores) share a single 12MB 
Level 3 (L3) cache

Computer Systems and Networks

36

Fall 2021



Cache Example – Intel Core i7 980x

ì Access time? (Measured in 3.5GHz clock cycles)
ì 4 cycles to access L1 cache
ì 9-10 cycles to access L2 cache
ì 30-40 cycles to access L3 cache

ì Smaller caches are faster to search
ì And can also fit closer to the processor core

ì Larger caches are slower to search
ì Plus we have to place them further away

Computer Systems and Networks

37

Fall 2021



Recap – Cache

ì Which is bigger – a cache or main memory?
ì Main memory

ì Which is faster to access – the cache or main memory?
ì Cache – It is smaller (which is faster to search) and closer

to the processor (signals take less time to propagate 
to/from the cache)

ì Why do we add a cache between the processor and 
main memory?
ì Performance – hopefully frequently-accessed data will be 

in the faster cache (so we don’t have to access slower 
main memory)

Computer Systems and Networks

38

Fall 2021



Recap – Cache

ì Which is manually controlled – a cache or a 
register?
ì Registers are manually controlled by the assembly 

language program (or the compiler)
ì Cache is automatically controlled by hardware

ì Suppose a program wishes to read from a 
particular memory address. Which is searched first 
– the cache or main memory?
ì Search the cache first – otherwise, there’s no 

performance gain

Computer Systems and Networks

39

Fall 2021



Recap – Cache

ì Suppose there is a cache miss (data not found) 
during a 1 byte memory read operation. How 
much data is loaded into the cache?
ì Trick question – we always load data into the cache 

1 “line” at a time. 
ì Cache line size varies – 64 bytes on a Core i7 

processor

Computer Systems and Networks

40

Fall 2021



Problem 3

ì Imagine a computer system only has main 
memory (no cache was present).  Is temporal or 
spatial locality important for performance when 
repeatedly accessing an array with 8-byte 
elements? 
ì No. Locality is not important in a system without 

caching, because every memory access will take the 
same length of time.

Fall 2021Computer Systems and Networks

41

P3



Problem 4

ì Imagine a memory system has main memory and a 1-
level cache, but each cache line size is only 
8 bytes in size. Assume the cache is much smaller than 
main memory. Is temporal or spatial locality important 
for performance here when repeatedly accessing an 
array with 8-byte elements?
ì Only 1 array element is loaded at a time in this cache
ì Temporal locality is important (access will be faster if the 

same element is accessed again)
ì Spatial locality is not important (neighboring elements 

are not loaded into the cache when an earlier element is 
accessed)

Fall 2021Computer Systems and Networks

42

P4



Problem 5

ì Imagine your program accesses a 100,000 element 
array (of 8 byte elements) once from beginning to 
end with stride 1.  The memory system has a 1-
level cache with a line size of 64 bytes. How many 
cache misses would be expected in this system?
ì 12500 cache misses.  The array has 100,000 

elements.  Upon a cache miss, 8 adjacent and 
aligned elements (one of which is the miss) is moved 
into the cache. Future accesses to those remaining 
elements should hit in the cache.  Thus, only 1/8 of 
the 100,000 element accesses result in a miss

Fall 2021Computer Systems and Networks

43

P5



Problem 6

ì Which code will have more cache hits? Assume 
array size larger than cache

Fall 2021Computer Systems and Networks

44

P6

for (i=0;i<row;i++)
for(j=0;j<col;j++)
sum+=array[i][j];

for (j=0;j<col;j++) 
for(i=0;i<row;i++)
sum+=array[i][j];

(A) (B)



ì
Memory Hierarchy – Virtual Memory

Fall 2021Computer Systems and Networks

45



Virtual Memory

Virtual Memory is a BIG LIE!
ì We lie to your application and 

tell it that the system is simple:
ì Physical memory is infinite! 

(or at least huge)
ì You can access all of physical 

memory
ì Your program starts at 

memory address zero
ì Your memory address is 

contiguous and in-order
ì Your memory is only RAM 

(main memory)

What the System Really Does

Computer Systems and Networks

46

Fall 2021



Why use Virtual Memory?

ì We want to run multiple programs on the computer 
concurrently (multitasking)
ì Each program needs its own separate memory region, so 

physical resources must be divided
ì The amount of memory each program takes could vary 

dynamically over time (and the user could run a different 
mix of apps at once)

ì We want to use multiple types of storage (main 
memory, disk) to increase performance and capacity

ì We don’t want the programmer to worry about this
ì Make the processor architect handle these details

Computer Systems and Networks

47

Fall 2021



Pages and Virtual Memory

ì Main memory is divided into pages for virtual 
memory
ì Pages size = 4kB
ì Data is moved between main memory and disk at a 

page granularity
ì i.e. like the cache, we don’t move single bytes around, 

but rather big groups of bytes

Computer Systems and Networks

48

Fall 2021



Pages and Virtual Memory

ì Main memory and virtual memory are divided into equal 
sized pages

ì The entire address space required by a process need not 
be in memory at once
ì Some pages can be on disk

ì Push the unneeded parts out to slow disk
ì Other pages can be in main memory

ì Keep the frequently accessed pages in faster main 
memory

ì The pages allocated to a process do not need to be 
stored contiguously-- either on disk or in memory

49

Computer Systems and Networks Fall 2021



Virtual Memory Terms

ì Physical address – the  actual memory address in the real 
main memory

ì Virtual address – the memory address that is seen in your 
program
ì Special hardware/software translates virtual addresses into 

physical addresses!

ì Page faults – a program accesses a virtual address that is not 
currently resident in main memory (at a physical address)
ì The data must be loaded from disk!

ì Pagefile – The file on disk that holds memory pages
ì Usually twice the size of main memory

50

Computer Systems and Networks Fall 2021



Cache Memory vs Virtual Memory

ì Goal of cache memory 
ì Faster memory access speed (performance)

ì Goal of virtual memory 
ì Increase memory capacity without actually adding 

more main memory
ì Data is written to disk
ì If done carefully, this can improve performance
ì If overused, performance suffers greatly!

ì Increase system flexibility when running multiple 
user programs (as previously discussed)

51

Computer Systems and Networks Fall 2021


