
ì
Computer Systems and Networks
ECPE 170 – Dr. Pallipuram– University of the Pacific

Performance
Optimization

Slides are courtesy of Dr. Jeff Shafer

Lab Schedule

Activities
ì Today

ì Discussion on Performance
Optimization (Lab 6)

ì Next Week
ì Lab 6 – Performance

Optimization

Assignments Due
ì Lab 5

ì Due by OCT 6th 1159 PM

ì Lab 6
ì Due by OCT 17th 1159 PM

ì ** Video Presentation #1 **
ì Released OCT 7th

ì Due OCT 16th

Fall 2021Computer Systems and Networks

2

Quotes – Donald Knuth

Computer Systems and Networks

8

“People who are more than
casually interested in
computers should have at least
some idea of what the
underlying hardware is like.
Otherwise the programs they
write will be pretty weird.”
– Donald Knuth

Remember this when we’re learning
assembly programming later this semester!

Fall 2021

ì
Performance Optimization

Computer Systems and Networks

9

Fall 2021

Vote

ì Who will do a better job improving program
performance?

ì The compiler -vs- The programmer

Computer Systems and Networks

10

Fall 2021

Lab 6 Goals

1. What can the compiler do for programmers to
improve performance?

2. What can programmers do to improve
performance?

Computer Systems and Networks

11

Fall 2021

ì
The Compiler

Computer Systems and Networks

12

Fall 2021

Compiler Goals

ì What are the compiler’s goals with optimization off?

ì Obvious
ì Generate binary (executable) that produces correct output

when run
ì Compile fast

ì Less Obvious:
ì Make debugging produce expected results!

Computer Systems and Networks

13

Fall 2021

Compiler Goals

ì What are the compiler’s goals with optimization
on?

ì Reduce program code size

ì Reduce program execution time

ì These may be mutually exclusive!

Computer Systems and Networks

14

Fall 2021

Compiler Optimization Levels

O1: Moderately optimize the code, but do not increase the
compilation time

gcc -O1 -o myexec main.c

O2: Optimize more, take time, but do not increase the code size

gcc -O2 -o myexec main.c

O3: Optimize aggressively, take time, even if code size increases!

gcc -O3 -o myexec main.c

Computer Systems and Networks

15

Fall 2021

Optimization Tradeoffs

ì What might we lose when we turn on
optimization?

ì Compilation will take a lot longer

ì Debugging is harder

Computer Systems and Networks

16

Fall 2021

Compiler Optimizations

ì Inline Functions ì Pros?

ì Cons?

Fall 2021Computer Systems and Networks

17

int max(int a, int b)
{

if(a>b)
return a;

else
return b;

}

max1 = max(w,x);
max2 = max(y,z);
printf("%i %i\n",

max1, max2);

if(w>x) max1 = w;
else max1 = x;

if(y>z)max2 = y;
else max2 = z;

printf("%i %i\n",
max1, max2);

Lower overhead

Bigger binary
(except for tiny functions – like this?)

P1

Compiler Optimizations

ì What specific overhead
exists here?

ì Calling a function
ì Save variables in the

processor (“registers”) to
memory (in the stack)

ì Jump to the function
ì Create new stack space for

function and its local
variables

ì Returning from function
ì Load old values from stack
ì Jump to prior location

Computer Systems and Networks

18

int max(int a, int b)
{

if(a>b)
return a;

else
return b;

}

Fall 2021

Compiler Optimizations

ì Unroll Loops ì Pros?

ì Cons?

Computer Systems and Networks

19

int x;
for (x = 0; x < 100; x++)
{

delete(x);
}

int x;
for (x = 0; x < 100; x+=5)
{

delete(x);
delete(x+1);
delete(x+2);
delete(x+3);
delete(x+4);

}

Lower overhead
Parallelism (potentially)

Bigger binary

Fall 2021

Compiler Optimizations

ì What specific loop
overhead exists here?

ì Top of loop
ì Compare x against 100
ì If less than, jump to …
ì Otherwise, jump to…

ì Bottom of loop
ì Increment x by 1
ì Jump to top of loop

ì Impact on Branch Predictor
(CPU microarchitecture)

Computer Systems and Networks

20

int x;
for (x = 0; x < 100; x++)
{

delete(x);
}

Fall 2021

Compiler Optimizations

ì Loops Vectorization ì Pros?

ì Cons?

Computer Systems and Networks

21

for(i=0; i<16; i++)
{

C[i]=A[i]+B[i];
}

Parallelism

Requires specific
features in CPU

A[0] A[1] A[2] A[3]

B[0] B[1] B[2] B[3]

C[0] C[1] C[2] C[3]

Vector units:

Fall 2021

Compiler Optimizations

ì A large number of common compiler optimizations
won’t make sense until we learn assembly code
later this semester
ì The compiler is optimizing the assembly code, not

the high-level source code

Computer Systems and Networks

22

Fall 2021

ì
The Programmer

Computer Systems and Networks

23

Fall 2021

The Compiler –vs– The Programmer

ì Humans can do a better job at optimizing code than
the compiler
ì Tradeoff: many developer-hours of time

ì Big picture idea: The compiler must be safe and
only make optimizations that function for all
possible data sets.
ì Even if the programmer knows that a particular

corner case cannot happen, the compiler doesn't
know that

Computer Systems and Networks

24

Fall 2021

The Compiler –vs– The Programmer

ì Is this optimization safe for
a compiler to do?

ì Twiddle1() needs 6 memory
accesses
ì 2x read xp
ì 2x read yp
ì 2x write xp

ì Twiddle2() needs 3 memory
accesses
ì Read xp
ì Read yp
ì Write xp

Computer Systems and Networks

25

void twiddle1(int *xp, int *yp)
{

*xp += *yp;
*xp += *yp;

}

void twiddle2(int *xp, int *yp)
{

*xp += 2 * *yp;
}

Fall 2021

The Compiler –vs– The Programmer

ì What if *xp and *yp pointed to the same memory address?

ì Twiddle1()
ì *xp += *xp;
ì *xp += *xp; // *xp increased 4x

ì Twiddle2()
ì *xp += 2 * *xp; // *xp increased 3x

ì This is memory aliasing (two pointers to the same address),
and is hard for compilers to detect
ì But the programmer can know whether aliasing is a concern!

Computer Systems and Networks

26

Fall 2021

The Compiler –vs– The Programmer

ì Is this optimization safe for a compiler to do?

Computer Systems and Networks

27

int f();

int func1() {
return f() + f() + f() + f();

}

int func2() {
return 4*f();

}

Fall 2021

The Compiler –vs– The Programmer

ì Depends on what f() does!

ì With func1(): 0+1+2+3 = 6

ì With func2(): 4*0 = 0

ì Hard for compiler to detect side effects

Computer Systems and Networks

28

int counter = 0;

int f()
{

return counter++;
}

Fall 2021

The Compiler –vs– The Programmer

ì Compare two functions that convert a string to
lowercase

Computer Systems and Networks

29

void lower1(char *s)
{

int i;

for (i = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z')

s[i] -= ('A' - 'a');
}

void lower2(char *s)
{

int i;
int len = strlen(s);

for (i = 0; i < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z')

s[i] -= ('A' - 'a');
}

ì Could the compiler make
this optimization for us?

ì What does strlen() do
again?

Fall 2021

The Compiler –vs– The Programmer

ì Could the compiler make this optimization for us?

ì Very hard!
ì strlen() checks the elements of each string…
ì … and the string is being changed as each letter is

set to lowercase
ì Would need to determine that the null character is

not being set earlier or later in string!

Computer Systems and Networks

30

Fall 2021

The Compiler –vs– The Programmer

ì An awesome compiler won’t make up for a poor
programmer
ì No compiler will ever replace a lousy bubble sort

algorithm with a good merge sort algorithm

Computer Systems and Networks

31

Fall 2021

Problem 2: Programmer Optimization:
Code Motion

Rewrite the code below to optimize loop execution speed. Specifically, move a code
section from inside the loop to outside because that section does not need to be called
repeatedly!

for (int x=0; x<strlen(userinput); x++)
{

if(tolower(game.grid[i][j+x])==tolower(userinput[x]))
{

flag=1;
}
else
{

flag=0;
break;

}
}

Fall 2021Computer Systems and Networks

32

P2

Problem 3: Program Optimization:
Reduce Procedure Calls

Can you find out why this code is inefficient and fix it? Reduce function calls as much as
you can.

for(i=0;i<listsize;i++)
{
ele = get_num(head,i);
printf(”%d”,ele);

}

int get_num(struct list *head, int position) {
struct list *temp=head;
for(int i=0;i<position;i++) {
temp=temp->next;

}
return temp->num;

}

struct list {
struct list *next;
int num;

};

Fall 2021Computer Systems and Networks

33

P3

for(i=0;i<1e6;i++) {
level2v[i]+ =

0.5*(1+atan2(divide((level1v[i]+1.2),18)));
level2v[i]+= 0.5*(1+atan2(divide((level1v[i]-2),30)));
level2v[i]+= divide(1,cos(divide((level1v[i]-2),60)));

}

Where is the inefficiency? Fix it!

Problem 4: Program Optimization:
Reduce Unwanted memory accesses.

Fall 2021Computer Systems and Networks

34

P4

Assume level2v and level1v are float arrays

Problem 5: Program Optimization:
Loop Unrolling

Fall 2021Computer Systems and Networks

35

P5

Rewrite your code from Problem 4 using
loop unrolling. (Unroll by a factor of 2)

int x;
for (x = 0; x < 100; x++)
{

delete(x);
}

int x;
for (x = 0; x < 100; x+=5)
{

delete(x);
delete(x+1);
delete(x+2);
delete(x+3);
delete(x+4);

}

Problem 6-7: Research

Google search: Why is excessive use of global variables
discouraged?

Google search: Research a switch statement vs an if-
else ladder. Which one is better for performance?

Fall 2021Computer Systems and Networks

36

P6-7

Programmer Optimizations

ì Third part of lab will step you through six code
optimizations

1. Code motion
2. Reducing procedure calls
3. Eliminating memory accesses
4. Unrolling loops x2
5. Unrolling loops x3
6. Adding parallelism

Computer Systems and Networks

37

Fall 2021

Programmer Optimizations

ì Should we use these optimizations everywhere?

ì Beware of premature optimization! Only spend
effort optimizing if the performance monitoring
tools point out that a particular algorithm/function
is a bottleneck

ì “Premature optimization is the root of all evil
(or at least most of it) in programming.”

- Donald Knuth

ì Amdahl's law

Computer Systems and Networks

38

Fall 2021

Amdahl’s Law

ì The overall performance of a system is a result of
the interaction of all of its components

ì System performance is most effectively improved
when the performance of the most heavily used
components is improved - Amdahl’s Law

S: overall speedup
f: fraction of work performed by a faster
component
k: speedup of the faster component

Computer Systems and Networks

39

Fall 2021

Amdahl’s Law

ì Which produces the greatest speedup?
ì Accelerate by 8x a component used 20% of the time

ì Accelerate by 2x a component used 80% of the time

Computer Systems and Networks

40

Fall 2021

Amdahl’s Law & Parallelism

Computer Systems and Networks

41

0

4

8

12

16

20

1 core 2 cores 4 cores 8 cores 16 cores

“T
im

e”

Serial Parallel

Serial portion remains
unchanged no matter how
many CPU cores we add!

Double cores, ½
the execution
time

Fall 2021

