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ECPE	170	– Jeff	Shafer	– University	of	the	Pacific

Memory	Hierarchy
(Performance	Optimization)



Lab Schedule

Activities
ì This	Week

ì Lab	6	– Perf Optimization
ì Lab	7	– Memory	Hierarchy

ì Next	Tuesday
ì Intro	to	Python

ì Next	Thursday
ì **	Midterm	Exam **

Assignments	Due
ì Lab	6

ì Due	by	Mar	6th 5:00am

ì Lab	7
ì Due	by	Mar	20th 5:00am
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Your Personal Repository
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2017_spring_ecpe170\lab02
lab03
lab04
lab05
lab06
lab07
lab08
lab09
lab10
lab11
lab12
.hg

Hidden	Folder!
(name	starts	with	period)

Used	by	Mercurial	to	
track	all	repository	
history	(files,	
changelogs,	…)



Mercurial .hg Folder

ì The	existence	of	a	.hg hidden	folder	is	what	turns	
a	regular	directory	(and	its	subfolders)	into	a	special	
Mercurial	repository

ì When	you	add/commit	files,	Mercurial	looks	for	this	
.hg folder	in	the	current	directory	or	its	parents

Spring	2017Computer	Systems	and	Networks

4



ì
Memory Hierarchy
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Memory Hierarchy
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Fast	Performance	and Low	Cost

Goal	as	system	designers:	

Tradeoff:	Faster	memory	is	
more	expensive than	slower	memory



Memory Hierarchy

ì To	provide	the	best	performance	at	the	lowest	cost,	
memory	is	organized	in	a	hierarchical	fashion
ì Small,	fast storage	elements	are	kept	in	the	CPU
ì Larger,	slowermain	memory	are	outside	the	CPU	

(and	accessed	by	a	data	bus)
ì Largest,	slowest,	permanent	storage	(disks,	etc…)	

is	even	further	from	the	CPU
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To	date,	you’ve	only	
cared	about	two	
levels:	Main	
memory	and	Disks



ìMemory Hierarchy
– Registers and Cache
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Let’s	examine	the	
fastest	memory	
available



Memory Hierarchy – Registers

ì Storage	locations	available	on	the	processor	itself

ì Manually	managed	by	the	assembly	programmer	or	
compiler

ì You’ll	become	intimately	familiar	with	registers	
when	we	do	assembly	programming
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Memory Hierarchy – Caches

ì What	is	a	cache?
ì Speed	up	memory	accesses	by	storing	recently	used

data	closer	to	the	CPU
ì Closer than	main	memory	– on	the	CPU	itself!
ì Although	cache	is	much	smaller	than	main	memory,	

its	access	time	is	much	faster!
ì Cache	is	automatically	managed	by	the	hardware	

memory	system
ì Clever	programmers	can	help	the	hardware	use	the	

cache	more	effectively
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Memory Hierarchy – Caches

ì How	does	the	cache	work?
ì Not	going	to	discuss	how	caches	work	internally

ì If	you	want	to	learn	that,	take	ECPE	173!
ì This	class	is	focused	on	what	does	the	programmer	

need	to	know	about	the	underlying	system
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Memory Hierarchy – Access

ì CPU	wishes	to	read	data (needed	for	an	instruction)
1. Does	the	instruction	say	it	is	in	a	register	or	

memory?
ì If	register,	go	get	it!

2. If	in	memory,	send	request	to	nearest	memory	
(the	cache)

3. If	not	in	cache,	send	request	to	main	memory
4. If	not	in	main	memory,	send	request	to	the	disk
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(Cache) Hits versus Misses

Hit
ì When	data	is	found	at	a	

given	memory	level	
(e.g.	a	cache)

Miss
ì When	data	is	not found	at	a	

given	memory	level
(e.g.	a	cache)
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You	want	to	write	
programs	that	produce	a	
lot	of	hits,	not	misses!



Memory Hierarchy – Cache

ì Once	the	data	is	located	and	delivered	to	the	CPU,	
it	will	also	be	saved	into	cache	memory	for	future	
access
ì We	often	save	more	than	just	the	specific	byte(s)	

requested
ì Typical:	Neighboring	64	bytes	

(called	the	cache	line	size)
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Cache Locality
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Once	a	data	element	is	accessed,	it	is	likely	
that	a	nearby	data	element	(or	even	the	
same	element)	will	be	needed	soon

Principle	of	Locality



Cache Locality

ì Temporal	locality	– Recently-accessed	data	
elements	tend	to	be	accessed	again
ì Imagine	a	loop	counter…

ì Spatial	locality	- Accesses	tend	to	cluster	in	
memory
ì Imagine	scanning	through	all	elements	in	an	array,	

or	running	several	sequential	instructions	in	a	
program
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Programs	with	good	
locality	run	faster	than	
programs	with	poor	

locality
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A	program	that	randomly	
accesses	memory	addresses	
(but	never	repeats)	will	gain	
no	benefit from	a	cache



Recap – Cache

ì Which	is	bigger	– a	cache	or	main	memory?
ì Main	memory

ì Which	is	faster	to	access	– the	cache	or	main	memory?
ì Cache	– It	is	smaller (which	is	faster	to	search)	and	closer

to	the	processor	(signals	take	less	time	to	propagate	
to/from	the	cache)

ì Why	do	we	add	a	cache	between	the	processor	and	
main	memory?
ì Performance	– hopefully	frequently-accessed	data	will	be	

in	the	faster	cache	(so	we	don’t	have	to	access	slower	
main	memory)
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Recap – Cache

ì Which	is	manually	controlled	– a	cache	or	a	
register?
ì Registers	are	manually	controlled	by	the	assembly	

language	program	(or	the	compiler)
ì Cache	is	automatically	controlled	by	hardware

ì Suppose	a	program	wishes	to	read	from	a	
particular	memory	address.	Which	is	searched	first	
– the	cache	or	main	memory?
ì Search	the	cache	first	– otherwise,	there’s	no	

performance	gain
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Recap – Cache

ì Suppose	there	is	a	cache	miss	(data	not	found)	
during	a	1	byte	memory	read	operation.	How	
much	data	is	loaded	into	the	cache?
ì Trick	question	– we	always	load	data	into	the	cache	

1	“line”	at	a	time.	
ì Cache	line	size	varies	– 64	bytes	on	a	Core	i7	

processor
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Cache Q&A

ì Imagine	a	computer	system	only	has	main	
memory (no	cache	was	present).		Is	temporal or	
spatial	locality	important	for	performance	when	
repeatedly	accessing	an	array	with	8-byte	
elements?	
ì No.	Locality	is	not	important	in	a	system	without	

caching,	because	every	memory	access	will	take	the	
same	length	of	time.
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Cache Q&A

ì Imagine	a	memory	system	has	main	memory	and	a	1-
level	cache,	but	each	cache	line	size	is	only	
8	bytes in	size.	Assume	the	cache	is	much	smaller	than	
main	memory.	Is	temporal or	spatial	locality	important	
for	performance	here	when	repeatedly	accessing	an	
array	with	8-byte	elements?
ì Only	1	array	element	is	loaded	at	a	time	in	this	cache
ì Temporal	locality	is	important	(access	will	be	faster	if	the	

same	element	is	accessed	again)
ì Spatial	locality	is	not important	(neighboring	elements	

are	not	loaded	into	the	cache	when	an	earlier	element	is	
accessed)
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Cache Q&A

ì Imagine	a	memory	system	has	main	memory	and	a	
1-level	cache,	and	the	cache	line	size	is	64	bytes.	
Assume	the	cache	is	much	smaller	than	main	
memory.	Is	temporal or	spatial	locality important	
for	performance	here	when	repeatedly	accessing	
an	array	with	8-byte	elements?
ì 8	elements	(64B)	are	loaded	into	the	cache	at	a	time
ì Both forms	of	locality	are	useful	here!
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Cache Q&A

ì Imagine	your	program	accesses	a	100,000	element	
array	(of	8	byte	elements)	once	from	beginning	to	
end	with	stride	1.		The	memory	system	has	a	1-
level	cache	with	a	line	size	of	64	bytes.	No	pre-
fetching	is	implemented.	How	many	cache	misses	
would	be	expected	in	this	system?
ì 12500 cache	misses.		The	array	has	100,000	

elements.		Upon	a	cache	miss,	8	adjacent	and	
aligned	elements	(one	of	which	is	the	miss)	is	moved	
into	the	cache.	Future	accesses	to	those	remaining	
elements	should	hit	in	the	cache.		Thus,	only	1/8	of	
the	100,000	element	accesses	result	in	a	miss
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Cache Q&A

ì Imagine	your	program	accesses	a	100,000	element	
array	(of	8	byte	elements)	once	from	beginning	to	end	
with	stride	1.		The	memory	system	has	a	1-level	cache	
with	a	line	size	of	64	bytes.	A	hardware	prefetcher is	
implemented.	In	the	best-possible	case,	how	many	
cache	misses	would	be	expected	in	this	system?
ì 1	cache	miss - This	program	has	a	trivial	access	pattern	

with	stride	1.		In	the	perfect	world,	the	hardware	
prefetcher would	begin	guessing	future	memory	accesses	
after	the	initial	cache	miss	and	loading	them	into	the	
cache.		Assuming	the	prefetcher can	stay	ahead	of	the	
program,	then	all	future	memory	accesses	with	the	trivial	
+1	pattern	should	result	in	cache	hits
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Cache Example – Intel Core i7 980x

ì 6	core	processor	with	a	sophisticated	multi-level	
cache	hierarchy

ì 3.5GHz,	1.17	billion	transistors
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Cache Example – Intel Core i7 980x

ì Each	processor	core	has	its	own	a	L1	and	L2	cache
ì 32kB	Level	1	(L1)	data	cache
ì 32kB	Level	1	(L1)	instruction	cache
ì 256kB	Level	2	(L2)	cache	(both	instruction	and	data)

ì The	entire	chip	(all	6	cores)	share a	single	12MB	
Level	3	(L3)	cache
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Cache Example – Intel Core i7 980x

ì Access	time?	(Measured	in	3.5GHz	clock	cycles)
ì 4	cycles	to	access	L1	cache
ì 9-10	cycles	to	access	L2	cache
ì 30-40	cycles	to	access	L3	cache

ì Smaller	caches	are	faster	to	search
ì And	can	also	fit	closer	to	the	processor	core

ì Larger	caches	are	slower	to	search
ì Plus	we	have	to	place	them	further	away
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Caching is Ubiquitous!
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Type What	Cached Where	Cached Managed	By

TLB Address	Translation
(Virtual->Physical	
Memory	Address)

On-chip	TLB Hardware MMU
(Memory	Management	Unit)

Buffer cache Parts	of	files	on disk Main	memory Operating Systems

Disk	cache Disk	sectors Disk	controller Controller	firmware

Browser	cache Web	pages Local	Disk Web browser

Many	types	of	“cache”	in	computer	science,	with	different	meanings



ì
Memory Hierarchy – Virtual Memory
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Virtual Memory

Virtual	Memory	is	a	BIG	LIE!
ì We	lie to	your	application	and	

tell	it	that	the	system	is	simple:
ì Physical	memory	is	infinite!	

(or	at	least	huge)
ì You	can	access	all of	physical	

memory
ì Your	program	starts	at	

memory	address	zero
ì Your	memory	address	is	

contiguous and	in-order
ì Your	memory	is	only	RAM	

(main	memory)

What	the	System	Really	Does
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Why use Virtual Memory?

ì We	want	to	run	multiple	programs	on	the	computer	
concurrently	(multitasking)
ì Each	program	needs	its	own	separate	memory	region,	so	

physical	resources	must	be	divided
ì The	amount	of	memory	each	program	takes	could	vary	

dynamically	over	time	(and	the	user	could	run	a	different	
mix	of	apps	at	once)

ì We	want	to	use	multiple	types	of	storage	(main	
memory,	disk)	to	increase	performance	and	capacity

ì We	don’t	want	the	programmer	to	worry	about	this
ì Make	the	processor	architect	handle	these	details
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Pages and Virtual Memory

ì Main	memory	is	divided	into	pages	for	virtual	
memory
ì Pages	size	=	4kB
ì Data	is	moved	between	main	memory	and	disk	at	a	

page	granularity
ì i.e.	like	the	cache,	we	don’t	move	single	bytes	around,	

but	rather	big	groups	of	bytes
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Pages and Virtual Memory

ì Main	memory	and	virtual	memory	are	divided	into	equal	
sized	pages

ì The	entire	address	space	required	by	a	process	need	not	
be	in	memory	at	once
ì Some	pages	can	be	on	disk

ì Push	the	unneeded	parts	out	to	slow	disk
ì Other	pages	can	be	in	main	memory

ì Keep	the	frequently	accessed	pages	in	faster	main	
memory

ì The	pages	allocated	to	a	process	do	not	need	to	be	
stored	contiguously-- either	on	disk	or	in	memory

37
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Virtual Memory Terms

ì Physical	address	– the		actual	memory	address	in	the	real	
main	memory

ì Virtual	address	– the	memory	address	that	is	seen	in	your	
program
ì Special	hardware/software	translates	virtual	addresses	into	

physical	addresses!

ì Page	faults – a	program	accesses	a	virtual	address	that	is	not	
currently	resident	in	main	memory	(at	a	physical	address)
ì The	data	must	be	loaded	from	disk!

ì Pagefile – The	file	on	disk	that	holds	memory	pages
ì Usually	twice	the	size	of	main	memory

38
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Cache Memory vs Virtual Memory

ì Goal	of	cache	memory	
ì Faster	memory	access	speed	(performance)

ì Goal	of	virtual	memory	
ì Increase	memory	capacity without	actually	adding	

more	main	memory
ì Data	is	written	to	disk
ì If	done	carefully,	this	can	improve performance
ì If	overused,	performance	suffers greatly!

ì Increase	system	flexibility	when	running	multiple	
user	programs	(as	previously	discussed)

39
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ì
Memory Hierarchy – Magnetic Disks
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Magnetic Disk Technology

ì Hard	disk	platters	
are	mounted	on	
spindles

ì Read/write	heads	
are	mounted	on	a	
comb	that	swings	
radially	to	read	the	
disk
ì All	heads	move	

together!
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Magnetic Disk Technology

ì There	are	a	number	of	electromechanical
properties	of	hard	disk	drives	that	determine	how	
fast	its	data	can	be	accessed

ì Seek	time	– time	that	it	takes	for	a	disk	arm	to	
move	into	position	over	the	desired	cylinder

ì Rotational	delay	– time	that	it	takes	for	the	desired	
sector	to	move	into	position	beneath	the	
read/write	head

ì Seek	time	+	rotational	delay	= access	time
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How Big Will Hard Drives Get?

ì Advances	in	technology	have	defied	all	efforts	to	define	
the	ultimate	upper	limit	for	magnetic	disk	storage
ì In	the	1970s,	the	upper	limit	was	thought	to	be	around	

2Mb/in2

ì As	data	densities	increase,	bit	cells	consist	of	
proportionately	fewer	magnetic	grains
ì There	is	a	point	at	which	there	are	too	few	grains	to	hold	

a	value,	and	a	1	might	spontaneously	change	to	a	0,	or	
vice	versa

ì This	point	is	called	the	superparamagnetic limit
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How Big Will Hard Drives Get?

ì When	will	the	limit	be	reached?

ì In	2006,	the	limit	was	thought	to	lie	between	150Gb/in2
and	200Gb/in2	(with longitudinal	recording	technology)

ì 2010:	Commercial	drives	have	densities	up	to	667Gb/in2

ì 2012:	Seagate	demos	drive	with	1	Tbit/in²	density
ì With	heat-assisted	magnetic	recording – they	use	a	laser	

to	heat	bits	before	writing
ì Each	bit	is	~12.7nm	in	length	(a	dozen	atoms)
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Memory Hierarchy – SSDs
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Emergence of Solid State Disks (SSD)

ì Hard	drive	advantages?
ì Low	cost	per	bits

ì Hard	drive	disadvantages?
ì Very	slow	compared	to	main	memory
ì Fragile	(ever	dropped	one?)
ì Moving	parts	wear	out

ì Reductions	in	flash	memory	cost	has	created	another	
possibility:	solid	state	drives (SSDs)	
ì SSDs	appear	like	hard	drives	to	the	computer,	but	they	store	

data	in	non-volatile	flash	memory	circuits
ì Flash	is	quirky! Physical	limitations	pose	engineering	

challenges…
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Flash Memory

ì Typical	flash	chips	are	built	from	dense	arrays	of	NAND	gates

ì Different	from	hard	drives	– we	can’t read/write	a	single	bit	
(or	byte)
ì Reading	or	writing? Data	must	be	read	from	an	entire	flash	

page (2kB-8kB)
ì Reading	much	faster	than	writing	a	page
ì It	takes	some	time	before	the	cell	charge	reaches	a	stable	state

ì Erasing? An	entire	erasure	block	(32-128	pages)	must	be	
erased	(set	to	all	1’s)	first	before	individual	bits	can	be	
written	(set	to	0)
ì Erasing	takes	two	orders	of	magnitude	more	time	than	reading	
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Flash-based Solid State Drives (SSDs)

Advantages
ì Same	block-addressable	I/O	

interface	as	hard	drives

ì No	mechanical	latency
ì Access	latency	is	independent	

of	the	access	pattern
ì Compare	this	to	hard	drives

ì Energy	efficient	(no	disk	to	spin)

ì Resistant	to	extreme	shock,	
vibration,	temperature,	altitude

ì Near-instant	start-up	time

Challenges
ì Limited	endurance	and	the	

need	for	wear	leveling

ì Very	slow	to	erase	blocks	
(needed	before	
reprogramming)
ì Erase-before-write

ì Read/write	asymmetry
ì Reads	are	faster	than	

writes
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Flash Translation Layer

ì Flash	Translation	Layer	(FTL)
ì Necessary	for	flash	reliability	

and	performance
ì “Virtual”	addresses	seen	by	the	

OS	and	computer
ì “Physical”	addresses	used	by	

the	flash	memory

ì Perform	writes	out-of-place
ì Amortize	block	erasures	over	

many	write	operations

ì Wear-leveling
ì Writing	the	same	“virtual”	

address	repeatedly	won’t	write	
to	the	same	physical	flash	
location	repeatedly!
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“Virtual”	
addresses

“Physical”	
addresses

device	level

flash	chip	level
Flash	Translation	Layer

logical	page

flash	page flash	block spare	capacity
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