Cloud Computing

AWS Hosted
Services

AWS Hosted Services

What can a cloud service do for me beyond
providing a raw virtual machine and raw disks
attached to the same system?

Using Amazon as model

7 Similar services exist from Google, Microsoft, ...

dmazon
web services™

AWS SDK

® @ C

AWS SDK for Java AWS SDK for .NET AWS SDK for Python
AWS SDK for PHP AWS SDK for Node.js AWS SDK for Ruby

r the r the web interface.... Or -partyc:ents S
(Or the CLI... Or the web interf: Or 31 lients/SDKs)

L 4 o ®® Lo

OREGON

N. CALIFORNIA

Yo
AWS GOVCLOUD

SAO PAULO
Region &
Number of Availability Zones

New Region
Coming Soon

Cloud Computing Spring 2016

Americas

72 Northern Virginia
2 Oregon

72 Northern California
?2 Sao Paulo

72 GovCloud

Europe

72 lreland

? Frankfurt

Regions

Asia

2 Singapore

2 Tokyo

72 Sydney

72 Seoul

? Beijing (restricted/isolated)

Regions - Selection Criteria

Proximity to customers?

Proximity to your existing data centers /
equipment?

Remote from your operations for redundancy /
disaster recovery?

Legal / regulatory requirements?

Cost? (differs by region)

Availability Zones

Independent facilities in same geographic area
?2 Different power

s A
? Different network Amazon Web Services
Different building - - - -
))
| Region Availability Region Availability
LOW atenc / Zone / Zone
networking R YA Y ()
Availability Availability Availability Availability
between Zones Zone 5 Zone | Zone . Zone)
- / N /

Storage

Cloud Computing Spring 2016

Storage Options

Amazon Simple Storage Service (S3)
Amazon Elastic Block Storage (EBS)

Amazon Elastic File System (EFS)

Amazon 53 - Overview

Marketing: “Highly scalable, reliable, and low-latency
data storage infrastructure at very low cost”

Object storage

7

Operations: PUT, POST, COPY, DELETE

Features

7

N N N

Automatic versioning (restore old versions)
Automatic replication
Encryption (AWS keys or your keys)

Pay per usage (GB per month + # of requests +
bandwidth)

Amazon S3 — Storage Classes

Storage classes
? S3 Standard ($0.0300 per GB)

Milliseconds to access

2 S3Infrequent Access (S0.0125 per GB)
Milliseconds to access

A Amazon Glacier (50.007 per GB)

3-5 hours to access (higher access costs)

Lifecycle policies (migrate older data automatically)

Amazon S3 - Reliability

Reliability of Standard storage class:
? Service Level Agreement

? Design: 99.999999999% durability and 99.99%
availability of objects over a given year

Design: Sustain the concurrent loss of data in two
facilities
? Periodic consistency checks

Data stored on multiple devices and in multiple
facilities in the same region

? Extra SS option: Automatic Cross-Region Replication

Amazon S3 - Buckets

No such thing as “folders” in S3, only buckets

Buckets
72 Name must be globally unique across all users

Your code should be intelligent to respect name conflicts
?A Cannot be renamed, only deleted/created anew

2 Cannot be nested inside another bucket

“Fake folders” with a prefix (e.g. “folder1/”), but the structure is
flat to Amazon internally

72 Buckets are created inside a specific region (should be
consistent with your computation)

2 Names should be in “DNS Format”
“my.aws.bucket” is OK, but not “mybucket.” or “.mybucket”

Amazon S3 - Objects

Objects cannot be modified once created

72 (Cannot modify bytes 100-245, but you can upload an
entirely new file)

Limits
72 Maximum object size: 5TB
72 Maximum objects in bucket: unlimited

Data consistency
72 Read-after-write
PUT for new objects
72 Eventual consistency
DELETE, PUT for overwritten (modified) objects

Other Storage Options

What about legacy applications?

EC2 local storage

A Most nodes (aside from cheapest/smallest) have
either local disk(s) or local SSD(s)

72 Raw disk —you format with your filesystem

? Private disk (unless you choose to export it via the
network)

? Free (you already pay EC2 for the virtual machine)

2 Warning: Local storage is lost if you stop paying for
the node!

Other Storage Options

What about legacy applications?

Amazon Elastic Block Storage (EBS)

72 Virtual network disk instead of physical disk in EC2 node
Pro: Will persist after node is shut down!
Con: Slower? (must traverse network)

Raw disk — you format with your filesystem

Pay per GB (must “provision” in advance) + IOPS

SSD or Hard drive

Not sharable! (unless you use a fancy filesystem that
allows one disk to be concurrently accessed by multiple
computers)

A N N N

Other Storage Options

What about legacy applications?

Amazon Elastic File System (EFS)
? Looks like convention enterprise NFS storage
?2 SSD based, “petabyte scale”

? Sharable - Multiple EC2 nodes can access same EFS
drive

NFS server (from Amazon) software coordinates/
synchronizes between multiple clients

18

Databases

Cloud Computing Spring 2016

Database Options

Amazon DynamoDB
Amazon ElastiCache

Amazon Relational Database Service (RDS)

Amazon DynamoDB

Marketing: “a fast and flexible NoSQL database service
for all applications that need consistent, single-digit
millisecond latency at any scale.”

Fully managed cloud database + All SSDs
Automatic replication across 3 availability zones
Data models: document and key-value store

Pricing model: Throughput, not raw capacity
72 Write operations per hour

? Read operations per hour / per consistency level

DynamoDB — NoSQL?

What is a NoSQL database?

What is a SQL (“relational”) database?

Relational Database

full_name
username
text

created_at

Idea: Minimize
redundant
values with
related tables...

Strict schema!

id
text

created_at

—> username

INSERT INTO users
(full name, username)
VALUES ("Jeff Shafer",
"shafer");

> from_user

> to_user

SELECT full name,
text, created at FROM
users, tweets WHERE
users.username =
tweets.username AND
username="shafer";

Relational Database Challenges

Relational databases scale up

7 Buy a bigger, more expensive server
? Lots of CPU cores

? Lots of RAM

? Lots of SSDs

But you still have one server
2 Hot backup? (only one used at a time)
7 Read replicas? (helpful if writes are infrequent)

Internet systems scale out to multiple servers

NoSQL Inspiration

It would be easier to scale-out a database if SQL
wasn’t so complicated

Do we really need all these features?

Do we really need all these data consistency
guarantees?

What set of features do web apps really need?

Data model

ACID

Performance

Scale

API

Relational Database

Strict table schema (rows,
columns)

Atomicity (all or nothing)
Consistency (meets schema)
Isolation (separate transactions)
Durability (recover to last
known state)

Disk / SSD dependent

Scale “up” with faster hardware

Structured Query Language
(sQL)

25

NoSQL Database

No schema (“hash key” / index
accesses semi-structured data

Relaxed ACID compliance
(tradeoffs!)

Cluster size / network speed
dependent

Scale “out” with distributed
cluster / low-cost hardware

Object-based API

DynamoDB is NoSQL

No joins of data between tables

72 Very difficult to implement joins in a scalable
manner

Programmers must use multiple queries

Programmer can arrange data differently so joins
are never needed
? E.gthe record for your blog post has all the

comments embedded in it, so only one query is
needed

DynamoDB is NoSQL

No strict schema for a table

? Each record must have a “primary key” (which is indexed)
?2 Different records can have different attributes

72 Flexibility!

Tradeoff: You can only search on indexed attributes

What if | want to search on something other than the
primary key?

72 “Secondary index” feature

72 Limit of 5 indexes per table

? Indexes cost IOPS to maintain / update (SS)

2 Designers must plan ahead!

DynamoDB Operations

GET
7 Retrieve data by primary key

PUT
72 Insert new data by primary key

UPDATE
72 Modify existing data by primary key

DELETE
72 Remove existing data by primary key

DynamoDB Search

Query
? Search table using only primary key attribute values
2 Very fast!

Scan
? Search table by examining every item in table
? Slower to very slow! (depends on table size)

72 Might consume most of your provisioned read I0PS,
starving application

DynamoDB Consistency

Application programmer decides (per-request)

Eventually Consistent Reads (Default)

72 An eventually consistent read might not reflect the results of
a recently completed write. Consistency across all copies of
data is usually reached within a second. Repeating a read
after a short time should return the updated data

? Faster!

Strongly Consistent Reads

72 Astrongly consistent read returns a result that reflects all
writes that received a successful response prior to the read

2 Slower!

Dynamo: Amazon’s Highly Available Key-value Store

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Amazon.com

ABSTRACT

Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in
the world; even the slightest outage has significant financial
consequences and impacts customer trust. The Amazon.com
platform, which provides services for many web sites worldwide,
is implemented on top of an infrastructure of tens of thousands of
servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

This paper presents the design and implementation of Dynamo, a
highly available key-value storage system that some of Amazon’s
core services use to provide an “always-on” experience. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

One of the lessons our organization has learned from operating
Amazon’s platform is that the reliability and scalability of a
system is dependent on how its application state is managed.
Amazon uses a highly decentralized, loosely coupled, service
oriented architecture consisting of hundreds of services. In this
environment there is a particular need for storage technologies
that are always available. For example, customers should be able
to view and add items to their shopping cart even if disks are
failing, network routes are flapping, or data centers are being
destroyed by tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write to and
read from its data store, and that its data needs to be available
across multiple data centers.

Dealing with failures in an infrastructure comprised of millions of
components is our standard mode of operation; there are always a
small but significant number of server and network components
that are failing at any given time. As such Amazon’s software
systems need to be constructed in a manner that treats failure
handling as the normal case without impacting availability or
performance.

"Dynamo: Amazon's Highly Available Key-value Store"
by G. DeCandia et. al. (SOSP 2007)

Cloud Computing

Spring 2016

Amazon ElastiCache

In-memory (RAM) key-value store for small chunks
of arbitrary data (strings, objects) from results of
database calls, API calls, page rendering, ..., ..., ...

Choice of two popular open-source
implementations (not proprietary, for a change!)

72 Memcached - http://www.memcached.org/
72 Redis - http://redis.io/

These are clustered caching systems and provide
automatic detection and recovery from node
failures (plus scalability!)

In-Memory Cache

Goal: Reduce customer latency (lag)
? Perhaps the database is a bottleneck?

72 Do intensive queries once and save the result for
reuse (helps with read-heavy workloads)

Caching is effective if

?2 Datais slow or expensive to acquire when compared
to cache retrieval

? Datais accessed with sufficient frequency

Datais relatively static (or if rapidly changing,
staleness is not a significant issue)

Not “Just a Cache”

Common web feature: Box on home page:
2 “Most recent 10 posts from users”

2 “Show All” link to see all posts from newest to
oldest (paginated, 20 per page)

SELECT * FROM foo WHERE ...
ORDER BY time DESC LIMIT 10

Slow! Have to query database for every single page
load

In-Memory Cache Example

User submits post
1. Full data is sent to database, and

2. Snippet of data is sent to in-memory cache (post ID #,
text snippet?)

In-memory cache configured to only hold n most recent
entries

Homepage loaded
1. In-memory cache queried (faster!)

2. Database only queried if cache is empty or user selects
“View All” and exceeds data stored in cache

Other Database Options

What about legacy applications?

Amazon Relational Database Service (RDS)
? Choice of database engine

Amazon Aurora Oracle
Microsoft SQL Server PostgreSQL
MySQL MariaDB

?” Database engine updated by Amazon
72 Multi-availability zone instances

Synchronous replication with hot standby in different zone
? Scalability? (“classic”, not “cloud”)

Might need a very large ($SS) node

Might need read replicas
?A Hope your workload isn’t write-heavy

