ELEC / COMP 177 – Fall 2016

Computer Networking Internet Protocol (IP)

Some slides from Kurose and Ross, *Computer Networking*, 5th Edition

Upcoming Schedule

- Presentation 2 Security/Privacy
 - Presentations Nov 3rd, Nov 10th, Nov 15th
 - Upload slides to Canvas by "midnight" on day before presentation

Network Layer – IP

Why not just use Ethernet?

- Most computer systems use Ethernet networking
- Ethernet provides facilities to
 - Locate computers
 - Forward packets directly
 - Prevent loops
 - ...
- What are the drawbacks of Ethernet for global communication?

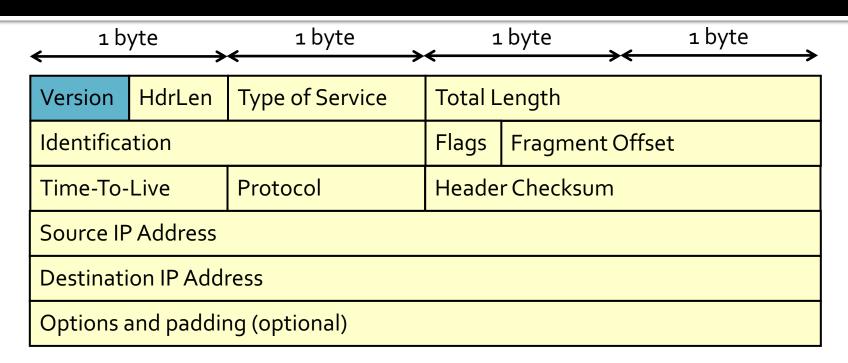
Ethernet Drawbacks

- Locating computers
 - Do we really want to broadcast across the Internet?
- Preventing loops
 - Do we really want to rebuild an Internet-wide spanning tree whenever the topology changes?
 - Do we really want packets to live forever if loops remain?
- Unreachable computers
 - What happens if the destination is unreachable?
 - I.e., it doesn't exist, is turned off, is broken, ...

The Internet Protocol

Datagram

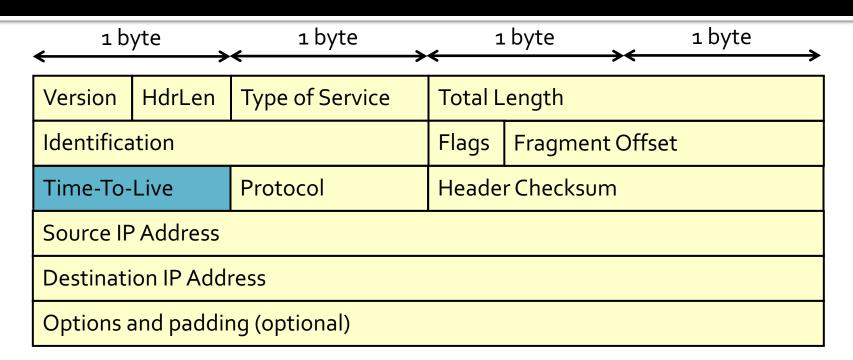
- Each packet is individually routed
- Packets may be fragmented or duplicated
 - Due to underlying networks
- Connectionless
 - No guarantee of delivery in sequence


Unreliable

- No guarantee of delivery
- No guarantee of integrity of data
- Best effort
 - Only drop packets when necessary
 - No time guarantee for delivery

An IP Datagram

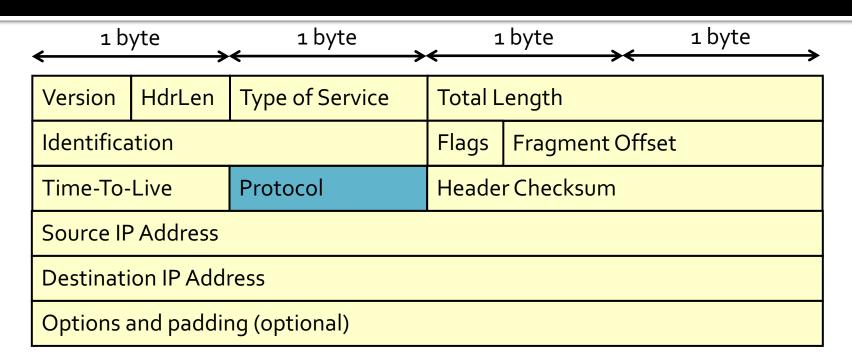
1 byte		ı byte	1 byte 1 k		1 byte
Version	HdrLen	Type of Service	Total Length		
Identification			Flags	Fragment Offset	
Time-To-Live		Protocol	Header Checksum		
Source IP Address					
Destination IP Address					
Options and padding (optional)					
Payload					


IP Version

IPv4 or IPv6

Also other, uncommon, options

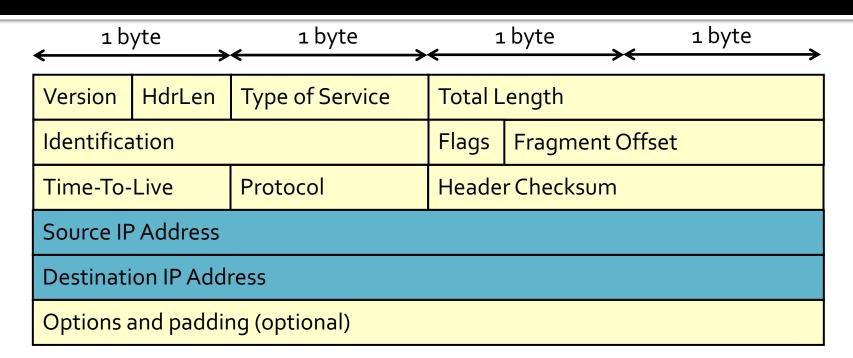
Time-To-Live



- "Hop count" decrement each hop
- Discard datagrams with zero TTL

IP: Time-to-Live

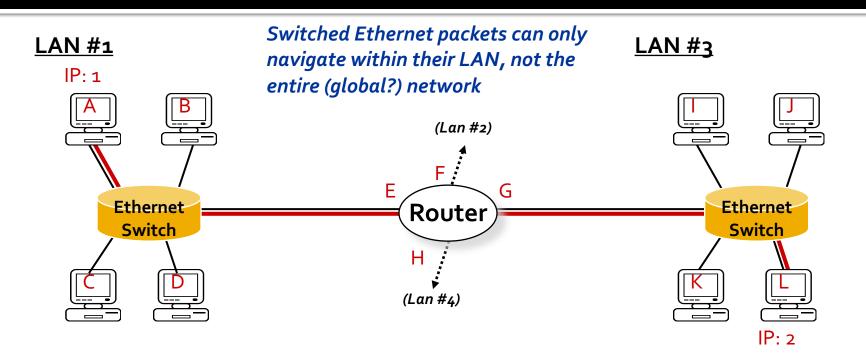
- Sender sets a TTL value for each datagram
- Each router decrements the TTL
- When the TTL reaches o
 - The router drops the datagram
 - The router sends an ICMP error (more later) to the sender
- Effectively a "maximum hop count"
- Why is this useful / necessary?


Protocol

What is encapsulated in this IP datagram?

1 = ICMP, 6 = TCP, 17 = UDP, etc...

IP Addresses



IP address of source and destination

IP encapsulated in Ethernet

Destination MAC Address					
Destination MAC Address	Source MAC Address				
Source MAC Address					
Туре (охо8оо)	Version	HdrLen	Type of Service		
Total Length	Identification				
Flags Fragment Offset	Time-To-Live		Protocol		
Header Checksum	Source IP Address				
Source IP Address	Destination IP Address				
Destination IP Address	Options and Padding				
Options and Padding	Payload				
Payload					
Ethernet CRC					

Routing Between LANs

(1) A (1) transmits to L (2) using IP. Ethernet frame destination is <u>router</u>

Frame:

EDA (E) ESA (A) 0x0800 IPDA (2) IPSA (1)

(2) Switch forwards frame to router

(3) Router uses IP protocol to forward data. Eth: update src/dst/crc IP: update TTL/checksum

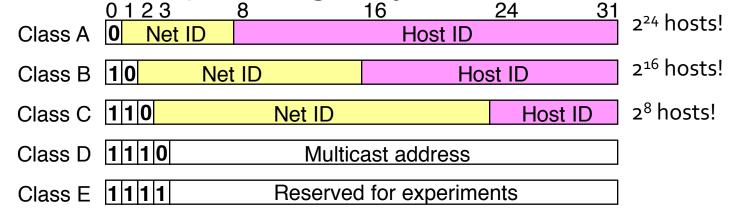
Frame:

(4) Switch forwards frame to destination

IP Address Format

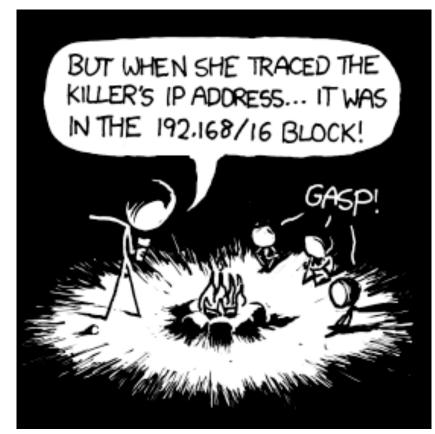
IP Addresses

IP version 4 addresses are 32-bits


- Version 6 address are 128 bits
- Every network interface has at least one IP address
 - A computer might have 2 or more IP addresses
 - A router has many IP addresses
 - These addresses can be assigned statically or dynamically
- IP addresses are always in big-endian byte order (network byte order)
 - True in general for any integer transferred in a packet header from one machine to another
 - E.g., the port number used to identify a TCP connection

IP Address Format

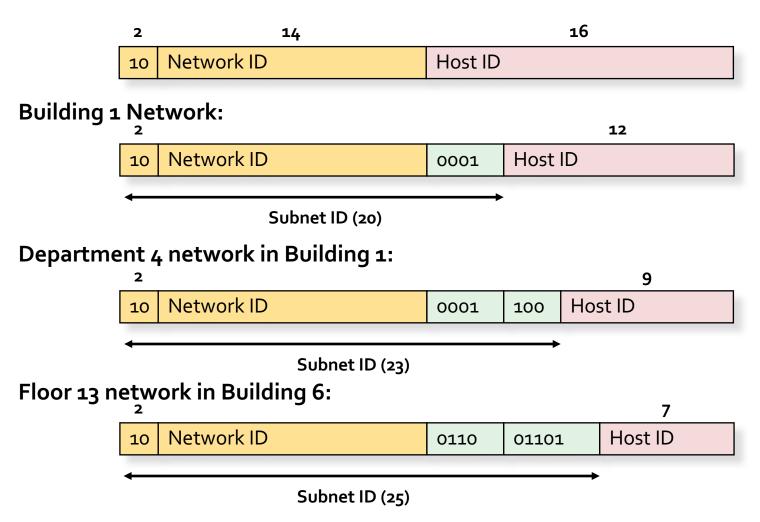
- IPv4 addresses are usually displayed in dotted decimal notation
 - Each byte represented by decimal value
 - Bytes are separated by a period
 - IP address 0x8002C2F2 = 128.2.194.242
- IP addresses are hierarchical
 - Address is composed of a network ID and a host ID
 - www.pacific.edu: 138.9.110.12


IP Address Structure

IPv4 Address space (*originally*) divided into classes:

- Special IP addresses
 - Loop-back address: 127.0.0.1
 - Unrouted (private) IP addresses:
 - 10.0.0.0 10.255.255.255
 - 172.16.0.0 172.31.255.255
 - 192.168.0.0 192.168.255.255

A Joke


http://xkcd.com/742/

Subnetting

- Divide the network within an organization
 - Basically consider one Class B network to be a collection of many smaller networks
 - Size of smaller networks can be selected by the organization (don't have to be Class C sized networks)
- Internet routers don't need to know about subnetting within an organization
 - Just route their traffic to the organization

Subnetting

Company's Class B Network:

Subnetting

- Can recursively subnet addresses down to as fine a granularity as you want
 - Almost...
 - Minimum-sized subnet has 4 addresses
 - Address 00 names the subnet
 - Address 01 and 10 names hosts
 - Address 11 is the broadcast IP address
- Subnet sizes don't have to be the same
 - One building divided by department, one by floor
 - Department/floor subnets not the same size

Subnet Notation

A.B.C.D/X

- IP address of the subnet (with o's in all host ID bits)
- X = number of bits in the subnet network address
 Examples:
 - 17.0.0.0/8 Apple's entire class A address space
 - 17.2.3.0/24 A class C sized subnet in Apple's network
- Alternatively represented by subnet IP and a bit mask (netmask)
 - **17.0.0.0/255.0.0.0**
 - 17.2.3.0/255.255.255.0

Subnet Meaning

- Subnets don't have to have physical meaning
 - Although easier to keep track of if they do...
- Good subnet assignment simplifies routing for internal routers
 - All traffic for "building 1" goes through this port
 - All traffic for "department 3" goes through that port

Problems

- Address classes were too "rigid"
 - Class C is too small and Class B is too big in many situations
 - Inefficient use of address space
 - Leads to a shortage of addresses
- Small organizations wanted Class B networks
 - In case they grew to more than 255 hosts
 - But there are only about 16,000 Class B network IDs
- Larger organizations wanted many Class C networks
 - Separate network ID for each router link
- Every router in the Internet had to know about every network ID in every organization
 - Leads to large address tables in every router

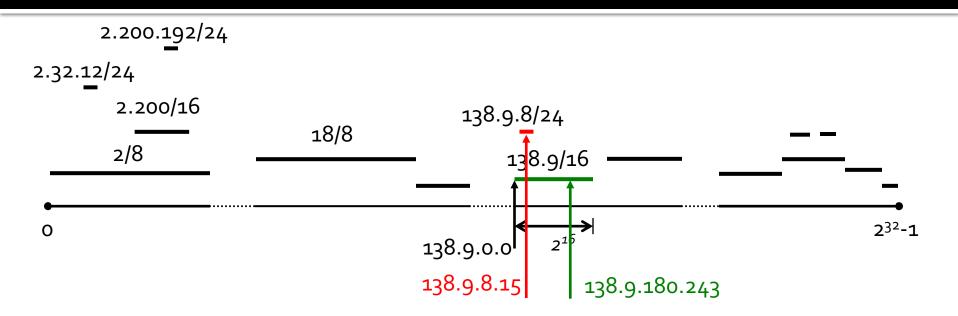
Classless InterDomain Routing

CIDR introduced in 1993

- Meant to provide more flexible routing
- Eliminate dependences on "class" networks in routing
- "Supernetting"
 - Combine multiple contiguous networks into one larger network
 - Effectively reduces the number of entries needed in each routing table
 - Inverse of subnetting which takes one larger network and breaks it into multiple contiguous smaller networks

CIDR Idea

- Break up IP address space into prefixes
 - Same idea as subnets (138.9/16)
- Each prefix has its own routing entry
 - All traffic to Pacific (138.9/16) within the Internet should be routed the same way, regardless of how Pacific subnets its address space


Route Aggregation

- Example: One ISP handles traffic for two corporate networks (129.32/16 and 129.33/16)
- Aggregate route to 129.32/15 for both networks
 - External routers don't care how the ISP breaks up the network addresses internally!
- Only break them apart when necessary for the last (few) hops

What if there are holes?

- Pacific builds a 4th campus
 - 138.9/16 needs to be routed to Pacific
 - 138.9.8/24 needs to be routed to our satellite campus in Hawaii...
- Do we need to break routes up?
 - **1**38.9.0/20 (.0-.7)
 - 138.9.8/24 (.8)
 - 138.9.9/24 (.9), 138.9.10/24 (.10), 138.9.11/24 (.11)
 - 138.9.12/22 (.12-.15)
 - 138.9.16/20 (.16-.31)
 - 138.9.32/19 (.32-.63)
 - 138.9.64/18 (.64-.127)
 - 138.9.128/17 (.128-.255)

IP Prefixes

- IP address space can be viewed as a number line
 - Each segment represents an aggregated route
 - Segments can overlap
- Look for smallest segment that matches the destination address : Longest Prefix Match

Longest Prefix Match

- Allow more specific entries to supersede more general ones
 - **1**38.9.8/24
 - Route this traffic to Hawaii
 - **1**38.9/16
 - Route this traffic to Stockton
 - Except for addresses that match a route with a longer prefix (i.e., 138.9.8/24)
- Allows significantly more route aggregation
- Simplifies things if companies move (physically or to another ISP) their block of IP addresses

IP Address Classes

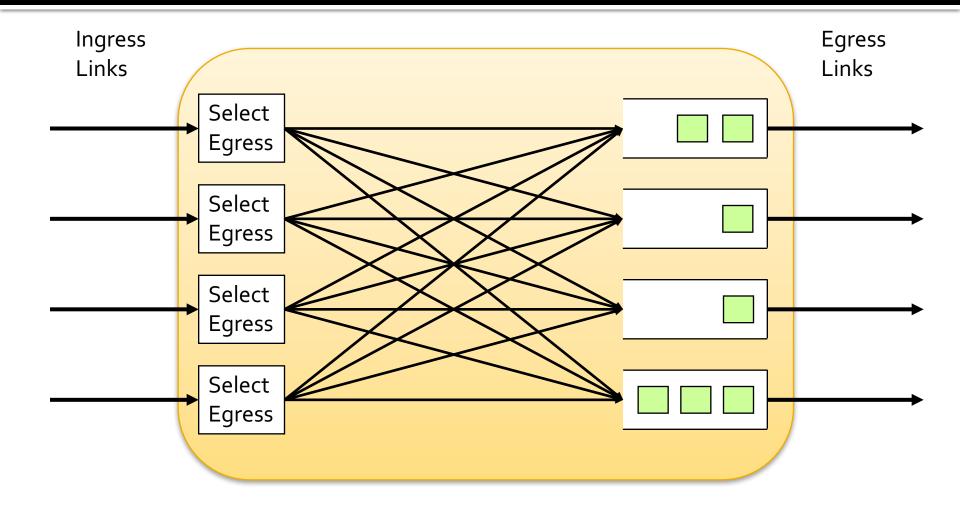
- CIDR makes address classes less important
- With CIDR, routing is based on arbitrary subdivisions of the address space
 - Aggregate routes into largest possible group
 - Use longer prefixes to deal with exceptions
- Routing
 - Routers use longest prefix matching to determine routes
 - No longer deal with exact matches on class network IDs

ARIN WHOIS Database Search

Relevant Links: ARIN Home Page ARIN Site Map Training: Querying ARIN's WHOIS

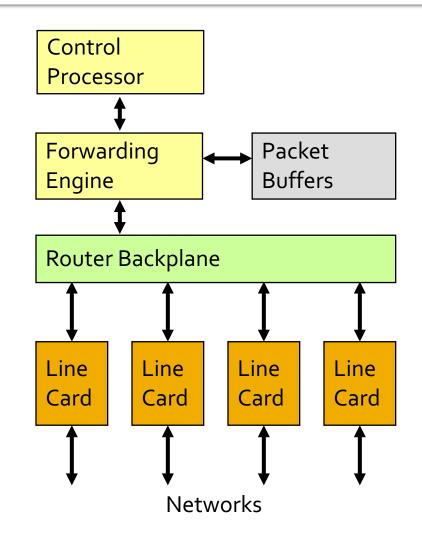
Search ARIN WHOIS for: 138.9.1.21

Submit


OrgName: OrgID: Address: City: StateProv: PostalCode: Country:	University of the Pacific UNIVER-95 3601 Pacific Ave. Stockton CA 95211 US				
NetRange: CIDR: NetName: NetHandle: Parent: NetType: NameServer: NameServer: Comment: RegDate: Updated:	138.9.0.0 - 138.9.255.255 138.9.0.0/16 UOP NET-138-9-0-0-1 NET-138-0-0-0-0 Direct Assignment NS1.PACIFIC.EDU NS2.PACIFIC.EDU 1990-01-17 2007-09-07				
RAbuseHandle: DAVEA-ARIN RAbuseName: Lundy, Dave A. RAbusePhone: +1-209-946-3951 RAbuseEmail: dlundy@pacific.edu BTechHandle: EES7-ARIN					
RTechName: RTechPhone: RTechEmail:	Escalante, Edgar +1-209-946-3190 eescalante@pacific.edu				
OrgTechHand OrgTechName OrgTechPhone OrgTechEmai	: Lundy, Dave A. e: +1-209-946-3951				

Router Operation

What's inside a router?



Simplified model of a router

Basic Router Components

- Key Modules
 - Network Interface
 - Packet processing
 - Packet buffering
 - Packet switching
- Processing and buffering can be centralized or decentralized

Packet Processing

- What does a router need to do?
- Driven by protocols
 - Ethernet
 - IP
 - ARP
 - ICMP
 - Transport: TCP, UDP, etc.

On packet arrival...

Processing

- Buffer packet?
- Determine protocol (e.g., IP vs. ARP)
- Verify checksum, validate the packet, etc.
- Collect statistics?
- What's next in the "common" (valid IP packet) case?
 - Select egress link

Selecting an Egress Link

- Forwarding table
 lookup
 - Longest prefix match
 - Determine next hop IP address and egress link
- What if no match?
- Is this sufficient to route the packet to an output queue?

Prefix	Next Hop	Port
63/8	128.34.12.1	3
128.42/16	128.34.12.1	3
156.3/16	128.36.21.1	2
156.3.224/19	128.36.129.1	1
128.42.96/20	128.37.37.1	4
128.42.128/24	128.36.129.1	1
128.42.160/24	128.36.21.1	2

Updating the Destination Address

- ARP table lookup
 - Exact match on next hop IP address
 - Determine next hop MAC address
- What if no match?

IP	MAC
128.34.12.1	0C:FF:63:82:44:01
128.36.21.1	04:32:11:44:82:60
128.36.21.18	10:44:82:82:44:07
128.37.37.37	08:82:82:44:16:32
128.34.12.14	20:33:71:28:15:70
128.36.21.42	14:93:29:22:15:28

Generating ARP Requests

Broadcast on output port

- Ask for MAC address of next hop IP address
- Wait for reply
 - What do you do with the packet?
 - How long should you wait? (tradeoffs?)
- Receive reply
 - Update ARP table
 - Packet continues along forwarding path

Receiving ARP Requests

- Does the IP address match the IP address of the interface that received the ARP request?
 - Another system is trying to determine your MAC address
 - Respond with the appropriate ARP reply on the same interface
- Should ARP requests be forwarded if they aren't for the router?

Updating Packets

- Select egress link
- Update MAC address
- Is it now OK to forward packet to output queue?
- IP packet header must be modified
 - What needs to be modified?
 - When should it be modified?

Buffering

- Why do packets need to be buffered?
 - Waiting for access to a resource (lookup table, switch, etc.)
 - Waiting for an ARP reply
 - • •
- What happens when buffers get full?
 - Packets have to be dropped
- How large do buffers need to be?
 - Statistical multiplexing

Error Handling

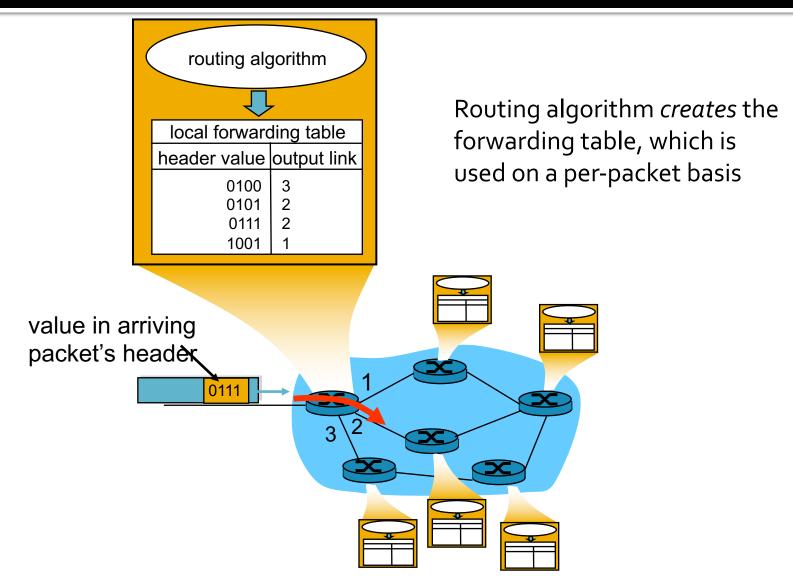
- ICMP Messages
 - Notify sender of errors
- Common error types
 - Host/network unreachable
 - No ARP response
 - Time exceeded
 - TTL decremented to zero
 - No route to host
 - No entry in routing table

Routing Algorithms

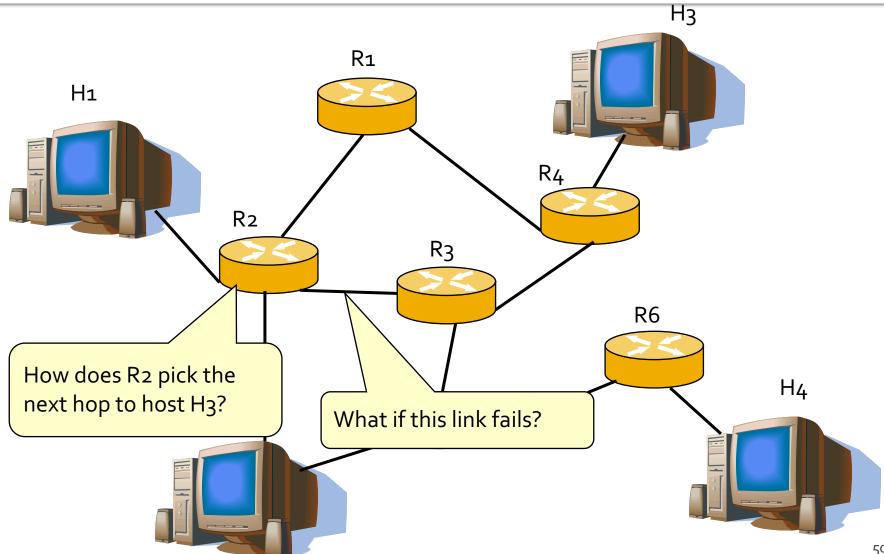
Two Key Network-Layer Functions

Forwarding

- Move packets from router's input to appropriate router output
- Forwarding table


Routing

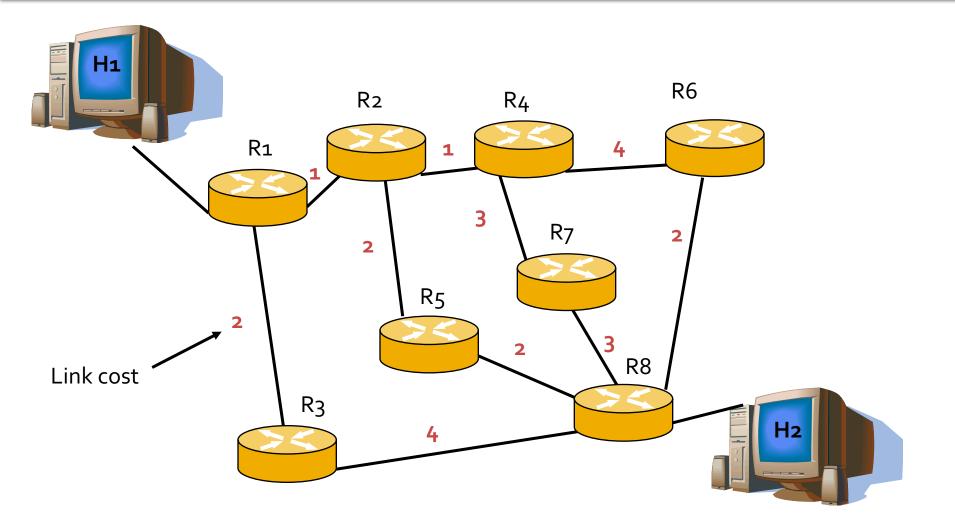
- Determine path (route) taken by packets from source to destination
- Routing algorithms


Road trip analogy:

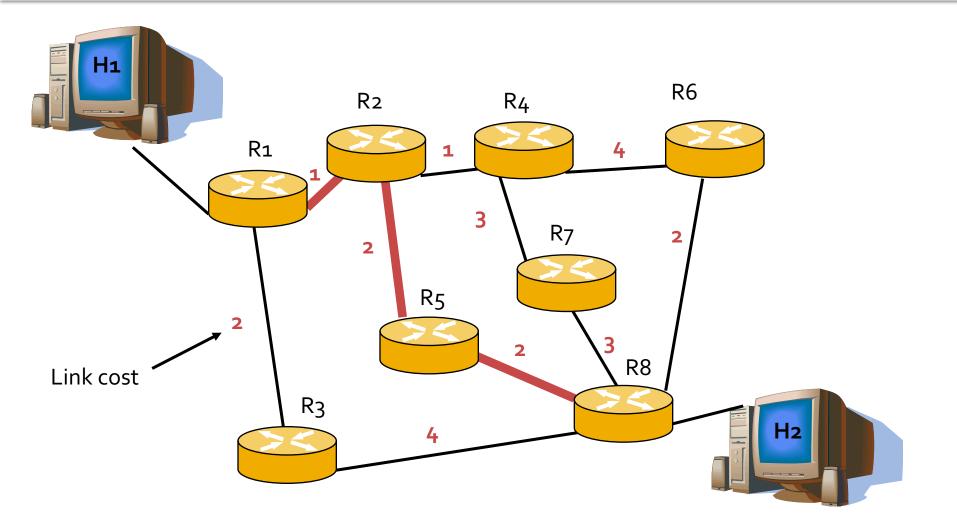
- Forwarding: process of getting through single interchange
- Routing: process of planning trip from source to destination

Routing versus Forwarding

Forwarding Table Entries


Generating/Updating Routes

- So far, we have assumed forwarding tables are populated statically by an administrator
- In reality, they are dynamically updated
 - Faster reaction to changing network conditions


What makes a good route?

- Low delay
- High bandwidth
- Low link utilization
- High link stability
- Low cost
 - (cheaper to use ISP A than ISP B)

Example Network

"Best" Path

Real Networks Are Complicated

The Internet in 2003

http://www.opte.org/maps/