
ELEC / COMP 177 – Fall 2016

Some slides from Kurose and Ross, Computer Networking, 5th Edition



¡ Project 2 – Python HTTP Server v2
§ Starts today!

¡ Checkpoint 1 - Due Oct 9th

¡ Checkpoint 1 - Due Oct 16th

¡ Final Project - Due Oct 23rd

2



3



¡ Survey:
§ Who has done parallel programming before?
§ What did you do?

4



¡ Why do I need concurrency in a web server?
§ Many clients making requests in parallel
§ What if several clients each attempt to download 

a large file?
▪ Ugly to make everyone wait on the first user to finish
▪ Eventually other clients would timeout and fail

§ A multi-CPU server should use all its resources 
(multiple cores) to satisfy multiple clients

5



MAXIMIZE

¡ Request throughput
(#/sec)

¡ Raw data throughput 
(Mbps)

¡ Number of concurrent 
connections

MINIMIZE

¡ Response times
(ms)

¡ Server CPU utilization
¡ Server memory usage

6



¡ We’ll use the recv() function for today’s examples

7

User-space

Kernel-space
(OS)

App 1 App 2 App n
. . .

TCP
(per-socket struct)

Buffer

recv()

Buffer

recv() copies data from kernel space to user-space.
If data is available, the function returns immediately with data



BLOCKING

¡ Standard mode
¡ When your program calls 
recv(), if no data is 
available, the OS puts your 
program to sleep 

¡ Your program is “blocked” 
on recv()

NON-BLOCKING

¡ Special mode for many 
socket calls, including 
recv()

¡ When your program calls 
recv(), if no data is 
available, recv()
immediately returns

8

recv() copies data from kernel space to user-space.
If data is available, the function returns immediately with data



SYNCHRONOUS

¡ “With Synchronization”
¡ One operation at a time…
¡ Function calls to OS 

services do not return until 
action is complete

ASYNCHRONOUS

¡ “Without Synchronization”
¡ Function calls to OS 

services return 
immediately, while OS 
action can proceed 
independently of user 
program

9



10

Synchronous 
Blocking I/O

Synchronous 
Non-Blocking I/O

Asynchronous 
Blocking I/O

Asynchronous 
Non-Blocking I/O



¡ Program requests 
data from OS

¡ recv() only returns 
once data is available

¡ Works fine for 
managing one socket
§ How about two

sockets with different 
clients?

11

Pseudo-code:

data = socket1.recv()
# Data now available



¡ Program requests 
data from OS

¡ recv() will return 
immediately, but may 
not have any data

¡ Busy-wait loop 
wastes CPU time

12

Pseudo-code:

socket1.blocking(off)
data = socket1.recv()
while(!data)

data = socket1.recv()

# Data now available

¡ How would this work if we had two sockets 
to manage?



¡ recv() still blocking
¡ Busy-wait loop 

replaced with new 
select() function
that tests multiple 
sockets at once

¡ Give select()
separate list of sockets
§ Want to recv()
§ Want to send()
§ Check for error

13

Pseudo-code:

list_recv = (socket1)
list = select(list_recv)
ready_sock = list[0]
data = ready_sock.recv()
# Data now available

¡ select() returns 
the subset of lists that 
are ready
(for send/recv/err)

¡ Not the most efficient 
function…



¡ recv() returns 
immediately

¡ In background, OS 
performs recv()
work

¡ When ready, OS calls 
a “callback” function 
in your program

14

Pseudo-code:

data = socket.q_recv(done)
# Do something else
# in program

fun done()
# When called, data
# is available



15

Process Thread

What’s the difference?



PROCESSES

¡ Use multi cores/CPUs
¡ Separate memory space
¡ Can communicate with 

other processes only by 
IPC (inter-process comm.)

¡ “Safer” to program (other 
processes can’t hurt you)

¡ “Heavy-weight” - Slower 
to start a new process
(lots of OS work)

THREADS

¡ Use multi cores/CPUs
¡ Same memory space
¡ Can communicate with other 

threads by shared memory
¡ “Harder” to program (other 

buggy threads can easily 
corrupt your memory + 
synchronization is hard!)

¡ “Light-weight” - Fast to start 
a new thread 
(minimal OS work)

16



PROCESSES

¡ Slow start?
§ Typical servers start a “pool” 

of processes when launched
§ Requests are quickly assigned 

to an already-running process 
when received

¡ Shared data?
§ Need to use OS IPC 

mechanisms to communicate
§ Needed to assign requests to 

processes, store log data from 
processes to single file, …

THREADS

¡ Fast start?
§ OK to start threads “on 

demand”
¡ Shared data?

§ Need synchronization (locks, 
semaphores, etc…) to prevent 
corruption of shared data

17



18

Synchronous 
Blocking I/O

Synchronous 
Non-Blocking I/O

Asynchronous 
Blocking I/O

Asynchronous 
Non-Blocking I/O

Processes or  Threads
with blocking sockets

Non-blocking sockets

Single process
with select()

Single process, 
Event driven



19

And now, a note 
about Python…



20

Novice

Intermediate

Pro

(Only if Google helps…)



21

So before assigning class 
projects, I wrote a Python 
web server using threads.

Once working, I measured 
its performance…



22

Results were “sub optimal”

Not this bad, but it certainly did not scale 
well as the number of concurrent clients 

increased…



¡ Python is an interpreted language
§ Several different interpreters exist…
§ Most common interpreter is written in C (“CPython”)

¡ CPython has a global lock 
(GIL = Global Interpreter Lock) 
§ Lock prevents two threads from running in the 

interpreter and manipulating memory at same time
§ Allows interpreter to run safely (correctly), perform 

garbage collection, etc…

23



¡ Effect of GIL (lock) on concurrency
§ I can have multiple threads working on OS-related 

tasks (send, recv, …) in parallel
§ But the GIL blocks multiple threads from running 

Python native code concurrently  L
▪ See: http://www.dabeaz.com/python/UnderstandingGIL.pdf

¡ So, while the Python language has nice 
threads, the CPython implementation limits 
the performance benefit

24



¡ Perfectly OK to use 
threads for class 
projects
§ Educational
§ Good practice for other 

languages!
§ Server code will look 

elegant
¡ Just don’t expect a 

massive performance 
boost from parallelism

25


