
ELEC / COMP 177 – Fall 2016

Some slides from Kurose and Ross, Computer Networking, 5th Edition

¡ Project #1
§ Starts next Tuesday Sept 13th

§ Is your Linux environment all ready?
§ Bring your laptop – Work time after discussion

of project goals

2

¡ Presentation #1
§ Discuss requirements (see website)…
§ Topic Approval – Thur Sept 15th

▪ See list of already-selected topics on webpage
▪ Email instructor selected topic

§ Presentations – Sept 22nd, Sept 29th, Oct 6th

▪ Upload slides to Canvas by midnight before
presentation

3

Application Layer

Transport Layer

Network Layer
Link Layer

Physical Layer

TCP UDP

HTTP FTP

IMAP DNS

POP

SSH

End-to-End
message
transfer

4

Sockets

¡ Challenge – Inter-process communication
¡ A process is an independent program running

on a host
§ Separate memory space

¡ How do processes communicate with other
processes
§ On the same host?
§ On different hosts?

¡ Send messages between each other
5

6

¡ An interface between process (application)
and network
§ The application creates a socket
§ The socket type dictates the style of

communication
▪ Reliable vs. best effort
▪ Connection-oriented vs. connectionless

¡ Once configured the application can
§ Pass data to the socket for network transmission
§ Receive data from the socket (transmitted

through the network by some other host)

Hardware Interface

IP

TCP UDP

User Process User Process User Process Application

Transport

Network

Link

Socket API

¡ A collection of system calls to write a
networking program at user-level

¡ Originally created in C
§ Introduced in BSD4.1 UNIX, 1983

¡ Python Socket API closely follows behavior
¡ API is similar to Unix file I/O in many respects:

open, close, read, write.
§ Data written into socket on one host can be read out

of socket on other host
§ Difference: networking has notion of client and server

¡ To receive messages, each process on a host
must have an identifier
§ IP addresses are unique
§ Is this sufficient?

¡ No, there can be thousands of processes running
on a single machine (with 1 IP address)

¡ Identifier must include
§ IP address
§ and port number (example: 80 for web)

9

¡ Each host has
65,536 ports

¡ Some ports
are reserved
for specific apps
§ FTP (20, 21), Telnet (23), HTTP (80), etc…

¡ Outgoing ports (on clients) can be dynamically
assigned by OS in upper region (above 49,152) –
called ephemeral ports

¡ See http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

10

Port 0

Port 1

Port 65535

¡ A socket connection has 5 general parameters:
§ The protocol

▪ Example: TCP, UDP etc.

§ The local and remote IP address
▪ Example: 171.64.64.64

§ The local and remote port number
▪ Need to determine to which process packets are delivered
▪ Some ports are reserved (e.g. 80 for HTTP)
▪ Root access required to listen on port numbers below 1024

TCP SERVICE

¡ Connection-oriented
§ Setup required between client

and server processes
¡ Reliable transport between

sending and receiving process
¡ Flow control

§ Sender won’t overwhelm
receiver

¡ Congestion control
§ Throttle sender when network

overloaded
¡ Does not provide

§ Timing, minimum throughput
guarantees, security

UDP SERVICE

¡ Unreliable data transfer
between sending and
receiving process

¡ Does not provide
§ Connection setup
§ Reliability
§ Flow control
§ Congestion control
§ Timing
§ Throughput guarantee
§ Security

12

Why
bother

with UDP
then?

¡ Sockets just allow us to send raw messages
between processes on different hosts
§ Transport service takes care of moving the data

¡ What exactly is sent is up to the application
§ An application-layer protocol
§ HTTP, IMAP, Skype, etc…

13

¡ Both the client and server speaking the protocol
must agree on
§ Types of messages exchanged

▪ e.g., request, response

§ Message syntax
▪ What fields are in messages
▪ How fields are delineated

§ Message semantics
▪ Meaning of information in fields

§ Rules for when and how processes send and respond
to messages

14

¡ Server must be
running before client
can send anything to it

¡ Server must have a
socket (door) through
which it receives and
sends messages

¡ Similarly client needs a
socket

¡ Socket is locally
identified with a port
number
§ Analogous to the apt # in

a building
¡ Client needs to know

server IP address and
socket port number
§ How do we find this?

15

¡ UDP: no “connection” between client and server
§ No handshaking
§ Sender explicitly

attaches IP address
and port of destination
to each message

§ OS attaches IP address and port of sending socket to
each segment

§ Server can extract IP address, port of sender from
received segment

16

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

17

Server

close client socket

read datagram from client socket

Client

Create datagram with server
IP and port=x, then send datagram
via client socket

Create server socket, port= x

write reply to server socket
with client IP and client
port

Create client
socket

Read datagram from socket

close server socket

¡ Can the client send a segment to server
without knowing the server’s IP address
and port number?

¡ Could use broadcast IP address of the
subnet to get around lack of IP address
knowledge…

¡ No way to avoid knowing port number…

18

¡ Each UDP message is self-contained and
complete

¡ Each time you read from a UDP socket, you
get a complete message as sent by the
sender
§ That is, assuming it wasn’t lost in transit!

¡ Think of UDP sockets as putting a stamp on a
letter and sticking it in the mail

19

20

TCP service: reliable transfer of bytes from one process to
another

process

TCP with
buffers,

variables

socket

controlled by
application

developer

controlled by
operating

system

host or
server

process

TCP with
buffers,

variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

Client must contact server
¡ Server process must first be

running
¡ Server must have created

socket (door) that welcomes
client’s contact

Client contacts server by:
¡ Creating client-local TCP

socket
¡ Specifying IP address, port

number of server process
¡ When client creates socket:

client TCP establishes
connection to server TCP

¡ When contacted by client,
server TCP creates new socket
for server process to
communicate with client
§ allows server to talk with

multiple clients
§ source port numbers used to

distinguish clients

TCP provides reliable, in-order
transfer of bytes (“pipe”)

between client and server

application viewpoint

21

22

Wait for incoming
connection requests
on server socket

Create server socket, port=x, for
incoming request(s)

Create socket,
Connect to server IP, port=x

Close connection socket

Read reply from client socket

Close client socket

Server Client(s)

Send request using client socket
Read request from
connection socket

Write reply to
connection socket

TCP
connection setup

¡ A stream is a sequence of characters that
flow into or out of a process.

¡ An input stream is attached to some input
source for the process, e.g., keyboard or
socket.

¡ An output stream is attached to an output
source, e.g., monitor or socket.

23

¡ TCP sockets are stream based
§ At the receiver, each read on a TCP socket is not

guaranteed to produce the same number of bytes as
were sent by the transmitter

§ All you know is that you’ll get the next set of bytes
▪ Keep reading, and eventually you’ll get them all

§ Your application has to have some way to separate a
stream of bytes into discrete messages

¡ Server has two types of sockets
§ One that listens for incoming connections
§ One on a per-client basis after a connection is opened

24

25

¡ Let’s take a simple connection-oriented (TCP)
server first

1. socket() create the socket descriptor
2. bind() associate the local address
3. listen() wait for incoming connections

from clients
4. accept() accept incoming connection
5. send(),recv() communicate with client
6. close() close the socket descriptor

26

¡ Let’s create the server socket now!
¡ Function prototype

§ descriptor = socket(family, type)
§ Family: AF_INET (IPv4) or AF_INET6 (IPv6)
§ Type: SOCK_STREAM (TCP) or SOCK_DGRAM (UDP)

¡ Returns a socket descriptor (class)
¡ Raises an exception (Socket.Error) if error

occurs

27

¡ bind() associates the server socket with a
specific port on the local machine

¡ Function prototype
§ bind(address)

¡ Address format
§ IPv4: (host, port)
§ IPv6: (host, port, flowinfo, scopeid)

¡ Raises an exception (Socket.Error) if error
occurs

28

¡ listen() listens for incoming messages
on the socket

¡ Function prototype
§ listen(backlog)
§ backlog is number of incoming connections on

queue (probably limited by OS to ~20)
¡ Raises an exception (Socket.Error) if error

occurs

29

¡ accept() acknowledges an incoming
connection

¡ Function prototype
§ (new_socket, address) = accept();

¡ Raises an exception (Socket.Error) if error
occurs

30

¡ Wait, what is happening here?
¡ I give accept():

§ The socket descriptor for the server
¡ accept() runs and gives me

§ A new socket descriptor that connects to the
client

§ Details on the incoming socket (the IP and port of
host that is connecting to me)

31

¡ The socket returned by accept() is not the same
socket that the server was listening on!

¡ A new socket, bound to a random port, is
created to handle the connection

¡ New socket should be closed when done with
communication

¡ Initial socket remains open and can still accept
more connections
§ The initial socket never does any application-level

communication. It just serves to generate new
sockets

¡ Someone from far far away will try to connect() to
your machine on a port that you are listen()ing on.

¡ Their connection will be queued up waiting to be
accept()ed

¡ You call accept() and you tell it to get the pending
connection

¡ accept() will return to you a brand new socket file
descriptor to use for this single connection!

¡ You now have two socket file descriptors for the price
of one!
§ The original one is still listening for more new connections
§ The newly created one is finally ready to send() and
recv()

33

¡ Send and receive data on connected,
streaming sockets (i.e. TCP)
§ We have different functions for unconnected /

UDP sockets: sendto() and recvfrom()
¡ Function prototypes

§ bytes_sent = send(bytes, flags);
▪ bytes is the data you want to send

§ buffer = recv(buf_size, flags);
▪ buffer is where you want the data to be copied to
▪ buf_size is the size of the buffer

34

¡ send() and recv() are stream-oriented
§ Your messages are not independent, they’re part of the

first-in, first-out stream
¡ send() and recv() may only partially succeed

§ send()might only send 256 out of 512 bytes you
requested

§ recv()might only fill your 4kB buffer with 1kB of data
¡ You (the poor, overworked programmer) are

responsible for repeatedly calling send() and
recv() until all your data is transferred
§ Look at sendall() to make sending easier…

35

¡ We’re finished
¡ Function prototype:

§ close()

36

¡ What does socket() do?
§ Create the socket descriptor

¡ What does bind() do?
§ Assigns a local address/port to the socket

¡ What does listen() do?
§ Configures socket to accept incoming connections

¡ What does accept() do?
§ Accepts incoming connection (will block until connection)

¡ What do send()/recv() do?
§ Communicate with client

¡ What does close() do?
§ Close the socket descriptor

37

¡ What is happening in these TCP socket
scenarios?
§ “My client program sent 100 bytes, but the server

program only got 50.”
§ “My client program sent several small packets,

but the server program received one large
packet.”

¡ Ans: TCP is a stream protocol
§ The sender or receiver (or both!) can segment and

recombine the stream at arbitrary locations

38
From: http://tangentsoft.net/wskfaq/articles/effective-tcp.html (Good article to read!)

¡ “How can I find out how many bytes are
waiting on a given socket, so I can set up a
receive buffer for the size of the packet?”
§ You don’t! Declare a reasonable fixed size buffer

when your program starts (say, 32kB) and always
receive data into that buffer
▪ Return value of recv() is the number of bytes saved into

the buffer

§ Then, copy data out of your buffer into the rest
of your program as needed

39
From: http://tangentsoft.net/wskfaq/articles/effective-tcp.html (Good article to read!)

¡ Why is it important to check for exceptions
after every single socket function?
§ Python will catch the exception and exit

automatically
§ In C, however, there are no exceptions and the

program will just blindly continue on!

40

41

¡ Let’s look at a simple connection-oriented
(TCP) client now
§ We don’t need bind(), listen(), or accept()!

1. socket() create the socket descriptor
2. connect() connect to the remote server
3. send(),recv() communicate with the server
4. close() end communication by closing

socket descriptor

42

¡ A client can use socket() just like a server does
to create a new socket

¡ Function prototype
§ descriptor = socket(family, type)
§ Family: AF_INET (IPv4) or AF_INET6 (IPv6)
§ Type: SOCK_STREAM (TCP) or SOCK_DGRAM (UDP)

¡ Returns a socket descriptor (class)
¡ Raises an exception (Socket.Error) if error

occurs

43

¡ Now that we have a socket on the client,
connect that socket to a remote system (where a
server is listening…)

¡ Function prototype
§ connect(address)

¡ Address format
§ IPv4: (host, port) where host could be

“www.google.com” or IP address

§ IPv6: (host, port, flowinfo, scopeid)
¡ Raises an exception (Socket.Error) if error occurs

44

¡ After that, it’s all the same
§ send() data
§ recv() data
§ close() the socket when finished

45

46

¡ What is a little endian
computer system?
§ Little-endian: lower

bytes come first (stored
in lower memory
addresses)

¡ What is a big endian
computer system?
¡ Higher bytes come first

47

Gulliver’s Travels

48

¡ Address and port are stored as integers in packet headers
§ Port: 16 bit integer
§ IPv4 address: 32 bit integer
§ IPv6 address: 128 bit integer

¡ Problem:
§ Different machines / OS’s order bytes differently in a word!
§ These machines may communicate with one another over the network

“128.119.40.12”

128 119 40 12

12.40.119.128

128 119 40 12

Big-Endian
machine

Little-Endian
machine

¡ Host Byte-Ordering
§ The byte ordering used by a host (big or little)

¡ Network Byte-Ordering
§ The byte ordering used by the network
§ Always big-endian

¡ Any words sent through the network should
be converted to network byte order prior to
transmission (and back to host byte order
once received)

49

¡ Should the socket perform the endianness
conversion automatically?
§ No – Not all data needs to be flipped
§ Imagine a stream of characters…

¡ Given big-endian machines don’t need
conversion routines and little-endian
machines do, how do we avoid writing two
versions of code?

50

51

y = htonl(x); # 32 bits
x = ntohl(y);

y = htons(x); # 16 bits
x = ntohs(y);

128.119.40.12

128 119 40 12

128.119.40.12

128 119 40 12

Big-Endian
machine

Little-Endian
machine

ntohl

128 119 40 12 1281194012

¡ Same code will work regardless of endian-ness of the
two machines

¡ On big-endian machines, these routines do nothing!
¡ On little-endian machines, they reverse the byte order

¡ htonl
§ Host to Network Order – Long (32 bits)

¡ htons
§ Host to Network Order – Short (16 bits)

¡ ntohl
§ Network to Host Order – Long (32 bits)

¡ ntohs
§ Network to Host Order – Short (16 bits)

52

