
ELEC / COMP 177 – Fall 2016

Some slides from Kurose and Ross, Computer Networking, 5th Edition

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

2

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

“Bits on a wire” Encoding schemes fight:
attenuation

distortion
clock skew

3

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Framing

Error Detection

Media Access
Control

Ethernet!

MAC addresses

Hubs & Switches

Transfer
between

neighbors

4

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

IP – Internet Protocol!

Packet Headers

IP Addresses

ICMP for error
reporting and

router signaling

Routers

Routing Protocols

End-to-End
packet

transfer

5

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

TCP UDP

End-to-End
message
transfer

Sockets

Flow Control Congestion Control

6

Application Layer

Transport Layer
Network Layer

Link Layer

Physical Layer

HTTP DNS IMAP

Sockets

… and many more!

Skype BitTorrent RDP

SSH LDAP NFS

7

¡ Transport-layer service
models
§ TCP and UDP

¡ Communication
paradigms
§ Client-server

§ Peer-to-peer

¡ Examine popular
application-level
protocols
§ HTTP

§ SMTP / POP3 / IMAP

§ DNS

¡ Program network
applications
§ Socket API

8

¡ What programs do you run that use the

Internet?

9

¡ Write programs that
§ Run on (different) end

systems
§ Communicate over network
§ e.g., web server software

communicates with
browser software

¡ No need to write software
for network-core devices
§ Network-core devices do

not run user applications
§ Applications on end

systems allows for rapid
app development and
distribution

10

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

¡ Client-server
§ Including data centers / cloud computing

¡ Peer-to-peer (P2P)
¡ Hybrid of client-server and P2P

11

¡ Server:
§ Always-on host
§ Permanent IP address
§ Lots of bandwidth
§ Server farms for scaling

¡ Clients:
§ Communicate with

server
§ May be intermittently

connected
§ May have dynamic IP

addresses
§ Do not communicate

directly with each other

12

client/server

13

The Datacenter

14

The Datacenter

15

Google Datacenter (1 of many…)

16

Microsoft Datacenter (Dublin, Ireland)

17

NSA Datacenter (Bluffdale, Utah. 2+ Billion $$)

¡ No always-on server
¡ Arbitrary end systems

directly communicate
¡ Peers are

intermittently
connected and change
IP addresses

¡ No central point of
failure

¡ Highly scalable but
difficult to manage

18

peer-peer

19

P2P “Datacenter”

¡ Skype
§ Voice-over-IP P2P application

§ Centralized server: finding address of remote party

§ Client-client connection: direct (not through server)

¡ Instant messaging
§ Chatting between two users is P2P

§ Centralized service: client presence detection/location
▪ User registers its IP address with central server when it comes

online

▪ User contacts central server to find IP addresses of buddies

20

¡ Process: program
running within a host
§ Within same host, two

processes communicate
using inter-process
communication (defined
by OS)

§ Processes in different
hosts communicate by
exchanging messages

¡ Client process: process
that initiates
communication

¡ Server process:
process that waits to
be contacted

¡ Applications with P2P
architectures have
both client and server
processes!

21

¡ Process sends/receives
messages to/from its socket

¡ Socket analogous to door
§ Sending process shoves

message out door
§ Transport infrastructure on

other side of door carries
message to socket at receiving
process

§ Imagine you are just writing to
a file…

¡ API allow customization of
socket
§ Choose transport protocol
§ Choose parameters of protocol

22

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

¡ Sockets just allow us to send raw messages
between processes on different hosts

§ Transport service takes care of moving the data

¡ What exactly is sent is up to the application
§ An application-layer protocol

§ HTTP, IMAP, Skype, etc…

23

¡ Both the client and server speaking the protocol
must agree on
§ Types of messages exchanged

▪ e.g., request, response

§ Message syntax
▪ What fields are in messages

▪ How fields are delineated

§ Message semantics
▪ Meaning of information in fields

§ Rules for when and how processes send and respond
to messages

24

¡ Public-domain protocols:
§ Defined in RFCs (Request for Comment)

§ Allows for interoperability

§ Examples: HTTP, SMTP, BitTorrent

¡ Proprietary protocols
§ Examples: Skype

25

¡ What kind of transport service do applications need?
¡ Data loss – OK or forbidden?

§ Some apps can tolerate some loss
§ Other apps requires 100% reliable data transfer

¡ Latency – OK, or bad?
§ Some apps require low delay to be effective

¡ Throughput
§ Some apps require minimum amount of throughput to be

effective
§ Other apps (“elastic apps”) utilize whatever throughout is

available
¡ Security?

§ Some apps require encyption

26

27

Application Data Loss?
(OK or not?)

Throughput?
(Min required or

elastic?)

Time Sensitive?
(Low delay required?)

File transfer

Email

Web pages

Real-time audio /

video

Stored audio/video

Gaming

Instant messaging

What do you think?

28

Application Data Loss?
(OK or not?)

Throughput?
(Min required or

elastic?)

Time Sensitive?
(Low delay required?)

File transfer No data loss Elastic “Normal” delay OK

Email No data loss Elastic “Normal” delay OK

Web pages No data loss Elastic “Normal” delay OK

Real-time audio /

video

Loss tolerant Minimum Time sensitive

Stored audio/video Loss tolerant Minimum “Normal” delay OK

Gaming No data loss Minimum Time sensitive

Instant messaging No data loss Elastic “Normal” delay OK

TCP SERVICE

¡ Connection-oriented
§ Setup required between client

and server processes
¡ Reliable transport between

sending and receiving process
¡ Flow control

§ Sender won’t overwhelm
receiver

¡ Congestion control
§ Sender won’t overwhelm the

network
¡ Does not provide

§ Timing, minimum throughput
guarantees, security

UDP SERVICE

¡ Unreliable data transfer
between sending and
receiving process

¡ Does not provide
§ Connection setup
§ Reliability
§ Flow control

§ Congestion control
§ Timing

§ Throughput guarantee
§ Security

29

Why
bother

with UDP
then?

30

Application Data Loss?
(OK or not?)

Throughput?
(Min required or

elastic?)

Time Sensitive?
(Low delay required?)

Transport

Protocol

File transfer No data loss Elastic “Normal” delay OK TCP

Email No data loss Elastic “Normal” delay OK TCP

Web pages No data loss Elastic “Normal” delay OK TCP

Real-time audio /

video

Loss tolerant Minimum Time sensitive UDP

Stored audio/video Loss tolerant Minimum “Normal” delay OK TCP or UDP

Gaming No data loss Minimum Time sensitive UDP

Instant messaging No data loss Elastic “Normal” delay OK TCP

31

¡ Web page consists of base HTML file and
(potentially) many referenced objects

§ HTML file, JPEG image, Flash video, …

¡ Each object is addressable by a URL

¡ Example URL:

32

www.somecompany.com/someDept/image.png

host name path name

¡ HTTP is the application
layer protocol for the
web

¡ It is how the client and
server communicate

¡ Client/server model
§ Client: browser that

requests, receives,
“displays” Web objects

§ Server: Web server
sends objects in
response to requests

33

PC running
Chrome

Server
running

Apache Web
server

Mac running
Safari

34

Server accepts TCP connection from client

HTTP messages (application-layer protocol
messages) exchanged between browser

(HTTP client) and Web server (HTTP server)

Client initiates TCP connection
(creates socket) to server, port 80

Client Server

TCP connection closed by client or server

¡ HTTP is “stateless”
¡ Server maintains no

information about past
client requests

¡ Why no state?
§ Protocols that maintain

“state” are complex!

§ Past history (state) must
be maintained

§ If server/client crashes,
their views of “state”
may be inconsistent and
must be reconciled

35

¡ Nonpersistent HTTP

§ At most one object is
sent over a TCP
connection.

¡ Persistent HTTP

§ Multiple objects can be
sent over single TCP
connection between
client and server.

36

Suppose user enters URL www.someCompany.com/someDept/index.html

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someCompany.com
on port 80

2. HTTP client sends HTTP request
message (containing URL) into TCP
connection socket. Message
indicates that client wants object
someDept/index.html

1b. HTTP server at host
www.someCompany.com
waiting for TCP connection at port
80. “accepts” connection,
notifying client

3. HTTP server receives request
message, forms response message
containing requested object, and
sends message into its socket

time

(contains text and references to 10 jpeg images)

37

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of 10
jpeg objects

4. HTTP server closes TCP
connection.

time

38

Why is this approach considered slow?

¡ RTT (Round Trip Time):
§ Time for a small packet

to travel from client to
server and back.

¡ Response time:
§ One RTT to initiate TCP

connection
§ One RTT for HTTP

request and first few
bytes of HTTP response
to return

§ File transmission time
¡ Total = 2RTT+transmit time

(per object!)

39

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

¡ Non-Persistent HTTP

issues

§ Requires 2 RTTs per
object

§ OS overhead for each
TCP connection

§ Browsers often open
parallel TCP connections
to fetch referenced
objects (more overhead)

¡ Persistent HTTP
§ Server leaves connection

open after sending
response

§ Subsequent HTTP
messages between same
client/server sent over
open connection

§ Client sends requests as
soon as it encounters a
referenced object

§ As little as one RTT for all
the referenced objects

40

¡ HTTP request messages
§ Used to send data from client to server
§ ASCII (human-readable format)

41

GET /somedir/page.html HTTP/1.1
Host: www.somecompany.com
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

42

¡ Post method

§ Web page often includes
form input

§ Input is uploaded to
server in entity body

¡ URL method

§ Uses GET method

§ Input is uploaded in URL
field of request line

43

www.somecompany.com/page.php?variable1=testData

¡ HTTP/1.0

§ GET

§ POST

§ HEAD
▪ asks server to leave

requested object out of
response

¡ HTTP/1.1

§ GET, POST, HEAD

§ PUT
▪ uploads file in entity body

to path specified in URL
field

§ DELETE
▪ deletes file specified in the

URL field

44

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

45

Used to send data from server to client

200 OK
§ request succeeded, requested object later in this message

301 Moved Permanently
§ requested object moved, new location specified later in this

message (Location:)

400 Bad Request
§ request message not understood by server

404 Not Found
§ requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

46

47

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port) at www.google.com
Anything typed in sent
to port 80 at www.google.com

telnet www.google.com 80

2. Type in a GET HTTP request:

GET /about/ HTTP/1.1
Host: www.google.com

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

TELNET DEMO

¡ Manual file request

WIRESHARK DEMO

¡ Filtering on protocol
headers

¡ Viewing request/response
¡ HTTP conversation

analysis of all captured
packets

48

¡ HTTP is stateless
§ State is sometimes

desired
¡ Solution? Cookies!

§ Created when you visit a
site for the first time

§ When initial HTTP
requests arrives at site,
site creates:
▪ Unique ID
▪ Entry in backend database

for ID

¡ Four components
1. Cookie header line of

HTTP response
message

2. Cookie header line in
HTTP request message

3. Cookie file kept on
user’s host, managed
by user’s browser

4. Back-end database at
Web site

49

50

client
server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

¡ Cookies store Key -> Value pairs
¡ What can I do with this?

§ Authorization, shopping carts, user session state (Web e-
mail)

¡ How to keep “state”:
§ Protocol endpoints (sender/receiver) both have to

maintain data over multiple transactions
§ Cookies: http messages carry state

¡ Tension between users and websites
§ Websites: If I can track you, I can make money from

marketers
§ Users: I don’t want to be tracked (and thus can delete

cookies)

51

