ECPE / COMP 177 Fall 2016

Computer Networking Lab Essentials

Some slides from Kurose and Ross, *Computer Networking*, 5th Edition

Lab Essentials - Motivation

- Course Organization Top-Down!
 - Starting with Applications / App programming
 - Then Transport Layer (TCP/UDP)...
 - Then Network Layer (IP)...
 - Then Link Layer (Ethernet)...
- Challenge for Lab:
 - You're going to start using Ethernet/IP on the first day!
- Solution 1-day overview of the essentials

Host Configuration

- My computer has several key network settings:
 - My Ethernet / MAC address
 - My IP address
 - Netmask of network I'm connected to
 - Next-hop gateway IP address of network I'm connected to
- What do these mean?

Ethernet Basics

The Link Layer

Local Area Network

 Goal: Connect computers across a Local Area Network

- Room?
- Floor?
- Building?
- Few buildings?
- Natural size limit to Ethernet-only networks
 - Will discuss reasons why later this semester

Ethernet - Addressing

- Each device on the network needs a **unique address**
- All Ethernet devices have <u>globally unique</u> 48-bit address assigned by manufacturer
 - Upper 24 bits Manufacturer
 - Lower 24 bits Unique device by manufacturer
 - The MAC address
- **Example:** 0x 00-07-E9-CB-79-4F
 - $0 \times 00 07 E9$ = Intel Corp (assigned by IEEE)
 - 0x CB-79-4F = Unique address per NIC (picked by Intel)

This is where "my" MAC address comes from

Ethernet Frame Format (Simplified)

Two MAC addresses saved in Ethernet frame

- Destination MAC Where is this frame going to?
- Source MAC Who sent this frame?
- Type: Indicates data type or length in bytes
- The Data!
- Note: The above view is simplified...

Topology

- So how do I connect dozens of computers together?
 - My cable only has two ends...

Ethernet Switch

Learns location of computers on Ethernet network

- Examine header of each arriving frame
- What is its source MAC address? (i.e. who sent it?)
 - Note the port it came in on!
 - Save this data in forwarding table
- Forwards data out correct port
 - Search forwarding table for **destination** MAC address

Ethernet Hub vs Switch

Ethernet Hub

A transmits to D D replies to A

Ethernet Switch

(assume learning already occurred)

A transmits to D D replies to A E transmits to B, and A to C

Internet Protocol (IP) Basics

The Network Layer

The Internet Protocol - Motivations

Ethernet is sufficient for a local-area network
IP is needed for a global network (the Internet!)

IP Properties

Datagram

- Each packet is individually routed
- Packets may be fragmented or duplicated
 - Due to underlying networks
- Connectionless
 - No guarantee of delivery in sequence

Unreliable

- No guarantee of delivery
- No guarantee of integrity of data
- Best effort
 - Only drop packets when necessary
 - No time guarantee for delivery

This is no different from standard Ethernet networks!

IP Addresses

- IP version 4 addresses are 32 bits long
- IP version 6 addresses are 128 bits
- Every network interface has at least one IP address
 - A computer might have 2 or more IP addresses
 - A router has many IP addresses
 - These addresses can be assigned statically or dynamically

This is where "my" IP address comes from

IP Address Format

- IPv4 addresses are usually displayed in dotted decimal notation
 - Each byte represented by decimal value
 - Bytes are separated by a period
 - IP address 0x8002C2F2 = 128.2.194.242

IP Packet Format (Simplified)

- Two IP addresses saved in packet
 - Destination IP address
 - Where is this packet going to?
 - Source IP address
 - Who sent this packet?
- Checksum
- Length
- Other fields
- The Data!

IP and Ethernet (Simplified View)

IP datagrams can be *encapsulated* in Ethernet frames

So what is sent on the wire is an Ethernet frame

- Inside of which is an IP packet...
 - Inside of which is the transport layer...
 - Inside of which is the application layer...

Host Configuration

- My computer has several key network settings:
 - My Ethernet / MAC address
 - My IP address
 - Netmask of network I'm connected to
 - Next-hop gateway IP address of network I'm connected to
- What do these mean?

Subnet

- A small network that is part of a larger network
- A collection of computers (probably in the same physical area) that have similar IP addresses

All computers in this *subnet* have IP addresses of the form 138.9.125.X

Note: There is no rule that says subnet addresses have to be at 8-bit boundaries!

Subnet Notation

A.B.C.D/X

- IP address of the subnet (with o's in all host ID bits)
- X = number of bits in the subnet network address
 Examples:
 - 17.0.0.0/8 Apple's entire class A address space
 - 17.2.3.0/24 A class C sized subnet in Apple's network
- Can also be represented by subnet IP and a bit mask (netmask)
 - **17.0.0.0/255.0.0.0**
 - 17.2.3.0/255.255.255.0
- Network specified by network operator

This is where "my" **netmask** is obtained

Host Configuration

- My computer has several key network settings:
 - My Ethernet / MAC address
 - My IP address
 - Netmask of network I'm connected to
 - Next-hop gateway IP address of network I'm connected to
- What do these mean?

Routers

- "Similar" to switches, but only at a high level
 - Packet comes in
 - Switch/router looks up the destination address
 - Packet forwarded out correct port
- Key difference #1: Routers forward based on IP addresses!
 - Router works at network layer, switch works at link layer

Routing Between LAN

This is where "my" netmask and nexthop gateway are

used

(1) A transmits to L using higher-level protocol (e.g. IP) Ethernet frame destination is <u>router</u>

Frame:

DA (E) SA (A) Type / Data CRC

(2) Switch forwards frame to router

(3) Router uses higher-level protocol (e.g, IP) to determine destination, and updates Ethernet frame destination, source and CRC

DA (L) SA (G) Type / Data CRC

(4) Switch forwards frame to destination

Frame:

Address Resolution Protocol

24

Address Resolution Protocol

- Find link layer address given a network layer address
 - i.e., what is the Ethernet address for a given IP address?
- Every IP node (hosts and routers) has an ARP table
 - Mapping from IP to Ethernet addresses on their LAN
 - May be incomplete
 - Can include both static and dynamic entries

Dynamic ARP Entries

- Systems "discover" IP → Ethernet address mappings, as needed
- Each entry has an IP address, an Ethernet address, and a timeout (typically around 20 minutes)
- ARP messages are broadcast on the LAN to discover mappings
 - All computers on the network receive the ARP requests

Learning MAC addresses

• Hosts learn IP \rightarrow Ethernet address mappings

- ARP responses are stored in ARP tables
- ARP requests are stored in ARP tables (whether the host is the target or not!)
- ARP entries time out
 - Allow machines to change IP and/or MAC addresses transparently
 - Eliminate stale entries (machines turn off, move, crash, etc.)

Recap – Forwarding

- What field do Ethernet switches forward data on?
 - Destination MAC address (in Ethernet header)
- What field do IP routers forward data on?
 - Destination IP address (in IP header)

Recap – Addresses

How many bits long is a MAC address?

- 48 bits
- **Example:** 0x 00-07-E9-CB-79-4F

How many bits long is an IPv4 address?

- 32 bits
- Example: 138.9.215.87

Recap

- "My" MAC address
 - Comes from?
 - Used in?
- "My" IP address
 - Comes from?
 - Used in?

- "My" Netmask
 - Comes from?
 - Used in?
- "My" Next Hop Gateway
 - Comes from?
 - Used in?