

ECPE 293A

Introduction

Introductions

Introduce yourself

- Name
- Undergrad major
- Interests
 - → Hardware which area?
 - Software which area?

Looking at pictures of clouds with computers

Looking at pictures of clouds with computers

What do you know about cloud computing?

What do you want to know about cloud computing?

Cloud = The Internet

- Cloud computing is a computing paradigm where you outsource your data, computation, or both
- Features
 - Resource scalability ("infinite"!)
 - On demand / "just-in-time" provisioning
 - No upfront cost ... pay-as-you-go

- Economic benefits for customers:
 - No upfront commitment in buying/leasing hardware
 - Can scale usage according to demand
 - Barriers to entry lowered for startups
- Economic benefits for providers:
 - Increased utilization of datacenter resources.

- - **Jaas**: Infrastructure as a Service
 - Selling virtualized hardware
 - **PaaS**: Platform as a service
 - Selling access to a configurable platform/API
 - **SaaS**: Software as a service
 - Selling software that a user directly interacts with

Cloud Computing Architecture

e.g., Web browser

SaaS, e.g., Google Docs

PaaS, e.g., Google AppEngine

laaS, e.g., Amazon EC2

Course Mechanics

Course Goals

- Understand the architecture behind modern cloud computing infrastructure
 - "How is the infrastructure built?"
 - Accomplished by: reading/discussing research papers
- Gain hands-on experience with modern cloud computing systems
 - "How do I use the infrastructure provided?"
 - Accomplished by: programming projects

Course Expectations

- This is not an undergraduate class
- I have <u>higher expectations</u> for you
- Independence You get to select research papers, project topics, and implementation strategies
 - Take advantage of this flexibility to focus the course in a specific area that interests you!

Research Papers – Discussion Leader

- During this semester, you will present 1 research paper to the class
- Job of discussion leader
 - Pick a paper (and email me for approval / posting)
 - Read it thoroughly (twice!)
 - Prepare a 20-minute PowerPoint presentation
 - As if you had done this work and were presenting it at a conference
 - Do not use existing work on the web! (OK to re-use figures)
 - Lead a group discussion for the remaining class period

Research Papers – Audience Members

- When you are not presenting a paper, you will be an audience member
- Job of audience members
 - Skim the paper 5 minutes before the start of class
 - If only 1 person has read the paper, class discussions will be unproductive (and agonizing!)

Research Papers – Audience Members

- Read the paper thoroughly
 - **2+ hours** for a good understanding
 - I'm a speed reader, but these technical papers are dense!
 - A little faster as you get up to speed in the field?
- → Bring to class (for credit) a 1-2 page document
 - Summary of paper
 - 7 Two strengths
 - Two weaknesses
 - Three questions for the presenter or other audience members

Projects

- Two programming projects
- **Project 1** − Large scale data processing
 - Dataset: CommonCrawl
 - Infrastructure: MapReduce
 - Application: Up to you!
- Project 2 Reliability / scalability in the cloud

Honor Code

- You are welcome to talk with your classmates about your projects
 - Everyone should have a different project focus, anyway...
- You are welcome use resources online (source code, tutorials, mailing lists, etc...)
 - Must document and disclose all of your sources in your project report

Grading

- Exams None!
- Quizzes None!
- **▶ Paper Discussions as** *Leader* − 10%
- **▶ Paper Discussions as Audience Member** − 25%
- **7 Programing Projects (2)** − 65%

Computers

- Who has a laptop they can bring to class?
- View research paper PDFs instead of printing them out
- Do in-class tutorials (or do we need a lab with computers?)

Upcoming Schedule – This Week

- **₹** Thur, Jan 16th − What is Cloud Computing?
 - **Your Homework 1:** Read Berkeley report
 - This is not a technical paper and should be a fast read.
 Just skim it...
 - No summary required for this paper (only!)
- Tue, Jan 21st What is Cloud Computing?
 - Continuation of Thursday's discussion
 - **Your Homework 2:** Pick 3 papers from the approved reading list that you could present and **email me**

Upcoming Schedule – Next Week

- Thur, Jan 23rd First paper presentation
 - Presenter: Dr. Shafer (use an an example)
 - MapReduce paper (used for your first project)
 - **Your Homework 3:** Audience members role
 - Read paper and prepare summary document
- **7** ...
- **₹** Feb 4th − First student paper presentation
 - Who volunteers to get a paper out of the way early before the semester gets busy?

Upcoming Schedule

- The question that you should always be asking yourself is: "What paper(s) should I read **before** the next class?"
 - Check schedule on website

Websites

Main website (syllabus, schedule, papers, ...)

http://ecs-network.serv.pacific.edu/ecpe-293a

Sakai website (projects, gradebook)

http://pacific.rsmart.com/

Website Tour

- Where to find:
 - List of papers to select from
 - Requirements for presenter
 - Requirements for audience members
 - Grading rubrics