

Computer Systems and Networks
ECPE 170 – University of the Pacific

Performance
Optimization

Project

Lab Schedule

Activities
 Today

 Lab 7 – Performance
Optimization Project

 Thursday
 Midterm Exam

Assignments Due
 Today

 Lab 5 due by 11:59pm

 Tuesday, Oct 15th
 Lab 6 due by 11:59pm

Fall 2013 Computer Systems and Networks

2


Version Control Postmortem

Fall 2013 Computer Systems and Networks

3

Issue In Spring 2013 Midterm Files

 Mercurial gave this error when pushing final results
for Part 2:

 Answer requires understanding how version control
keeps track of file history

Fall 2013 Computer Systems and Networks

4

Abort: no username supplied

Your Personal Repository

Fall 2013 Computer Systems and Networks

5

2013_spring_ecpe170\lab02
lab03
lab04
lab05
lab06
lab07
lab08
lab09
lab10
lab11
lab12
.hg

Hidden Folder!
(name starts with period)

Used by Mercurial to
track all repository
history (files,
changelogs, …)

Mercurial .hg Folder

 The existence of a .hg hidden folder is what turns
a regular directory (and its subfolders) into a special
Mercurial repository

 When you add/commit files, Mercurial looks for this
.hg folder in the current directory or its parents

 Let’s look at what happens if we clone one
repository into another…

Fall 2013 Computer Systems and Networks

6

Your Personal Repository

Fall 2013 Computer Systems and Networks

7

2013_spring_ecpe170
lab02
lab03
lab04
lab05
lab06
lab07
lab08
lab09
lab10
lab11
lab12

\.hg
Hidden Folder for your
personal repository

.hg
Hidden Folder for the
exam repository

2013_spring_ecpe170_exam1\main.c
 main.h
 data.txt

If students work in this exam folder
and commit changes, they are
committing to the exam repository,
not their personal repository!

Your Personal Repository

Fall 2013 Computer Systems and Networks

8

2013_spring_ecpe170
lab02
lab03
lab04
lab05
lab06
lab07
lab08
lab09
lab10
lab11
lab12

\.hg
Hidden Folder for your
personal repository

2013_spring_ecpe170_exam1\main.c
 main.h
 data.txt

The quick fix during the exam was to
delete the second .hg folder and
have students re-add / re-commit
files, which then went to their
personal repository.

Mercurial .hg Folder

 Even if you didn’t clone one repository into another,
you could still encounter this same error if you
copied the entire exam directory (which would
include the hidden folder) into your personal
repository…

Fall 2013 Computer Systems and Networks

9


Lab 7
Performance Optimization Project

Fall 2013 Computer Systems and Networks

10

Lab Program

 Analyzes n-gram statistics of a text document
 If n=1, it looks at individual words
 If n=2, it looks at pairs of words
 …

 Print statistics
 Top 10 n-grams in document
 Total n-grams
 Longest n-gram
 …

 Provided text files: Moby Dick, Shakespeare

Fall 2013 Computer Systems and Networks

11

Fall 2013 Computer Systems and Networks

12

unix> ./analysis_program -ngram 2 -hash-table-size <<REDACTED>> < moby.txt
Running analysis program...

Options used when running program:
ngram 2
details 10
hash-table-size <<REDACTED>>
N-gram size 2

Running analysis... (This can take several minutes or more!)
 Initializing hash table...
 Inserting all n-grams into hash table in lowercase form...
 Sorting all hash table elements according to frequency...

Analysis Details:
(Top 10 list of n-grams)
1840 'of the'
1142 'in the'
714 'to the'
435 'from the'
375 'the whale'
367 'of his'
362 'and the'
350 'on the'
328 'at the'
323 'to be'

Analysis Summary:
214365 total n-grams
114421 unique n-grams
91775 singleton n-grams (occur only once)
Most common n-gram (with 1840 occurrences) is 'of the'
Longest n-gram (4 have length 29) is 'phrenological characteristics'
Total time = 0.200000 seconds

Example Output

Study of size and shape of cranium
(as an indicator of mental abilities)

Lab Objectives

1. Fix memory leaks so that Valgrind report is clean
1. Missing a few calls to free() somewhere in the

code

2. Improve program performance by 80x
1. When compared to original code provided

3. Document your code changes by providing a “diff”
1. Easy to do (1 command!) if you use version control

properly and commit the original code before
modifying it

Fall 2013 Computer Systems and Networks

13

Memory Leaks / Valgrind

 Reminder 1
 For each malloc() call, you need a free() call

 Reminder 2
 The line of code that the Valgrind report identifies

is where the malloc() was
 This is NOT where you want to call free()!

Fall 2013 Computer Systems and Networks

14

Program Operation (for n=2)

 Read each word from the file

 Combine adjacent words into n-gram strings

 Convert to lowercase

Fall 2013 Computer Systems and Networks

15

Input File
(shakespeare.txt)

……. .. …….. …..

…. …… …… … ……
… ……. .. … .. …..

“ALL'S WELL THAT ENDS WELL”

“all’s well”

“that ends”

“well that”

“ends well”

Program Operation

 Apply a hash function to each n-gram string

 Insert n-gram into corresponding bucket in table

Fall 2013 Computer Systems and Networks

16

“all’s well” hash_function() Integer in range of [0, s-1]
(Used to select “bucket” in hash table)

0 1 2 3 4 5 … s-1

htable (hash table)

Program Operation

 This hash table is dynamically allocated in a single
call to malloc()
 (Technically, it is an array of pointers…)
 How many calls to free() will it take to clear it?

Fall 2013 Computer Systems and Networks

17

0 1 2 3 4 5 … s-1

htable (hash table)

Program Operation

 Each bucket is organized as a linked list. Search list
 If a matching string already exists in the linked list,

its frequency counter is incremented
 Otherwise, a new list element is added at the end

with its frequency counter set to 1
 List element points to char array containing n-gram

Fall 2013 Computer Systems and Networks

18

0 1 2 3 4 5 … s-1

Count=5

Count=1 a l l ‘ s w e l l

(some other bi-gram that
has been seen 5 times…)

Program Operation

 Hash Table: One per program (malloc())

 n-gram array: One per list element (malloc())

 List element: One per unique word (malloc())

Fall 2013 Computer Systems and Networks

19

0 1 2 3 4 5 … s-1

Count=5

Count=1 a l l ‘ s w e l l

(some other bi-gram that
has been seen 5 times…)

Program Operation

 So how many times will I need to call free() for:

 The hash table?
 Once! (only allocated once)

 The list elements?
 Once per element (might want a loop?)

 The unique word array?
 Once per word array (i.e. once per list element)

Fall 2013 Computer Systems and Networks

20

Program Operation

 File input finished

 Sort all elements in hash table according to
frequency
 This process is destructive to the hash table
 All of the linked lists in the hash table are destroyed,

and a single new linked list of all elements (in sorted
order) is created
 The elements still exist, just the links have changed

 Print statistics and exit

Fall 2013 Computer Systems and Networks

21

Performance Optimization

 The “tips” on the lab writeup are very helpful

 Sorting algorithm efficiency?

 Size of hash table?
 Do we want a hash table with lots of elements or

fewer elements? (How does this affect the linked
lists?)

 Hash function?
 If I increase the size of my hash table, do I need to

do anything about the hashing function?

Fall 2013 Computer Systems and Networks

22

	Computer Systems and Networks
	Lab Schedule
	Version Control Postmortem
	Issue In Spring 2013 Midterm Files
	Your Personal Repository
	Mercurial .hg Folder
	Your Personal Repository
	Your Personal Repository
	Mercurial .hg Folder
	Lab 7
	Lab Program
	Example Output
	Lab Objectives
	Memory Leaks / Valgrind
	Program Operation (for n=2)
	Program Operation
	Program Operation
	Program Operation
	Program Operation
	Program Operation
	Program Operation
	Performance Optimization

