.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Virtual Memory

Schedule

Today
72 Chapter 6 — Virtual memory

Wednesday
?A Chapter 7 — Input / Output Systems

Friday (March 30t)
A Quiz #5 — Chapter 6 (Cache & Virtual Memory)

Recap —Virtual Memory

Virtual Memory is a BIG LIE! What the System Really Does

We lie to your application and VESS?L;EZZZ?’ fnhey;‘gfy'
tell it that the system is simple:

72 Physical memory is infinite!
(or at least huge)

?2 You can access all of physical
memory

2 Your program starts at
memory address zero

72 Your memory address is
contiguous and in-order

72 Your memory is only RAM
(main memory)

Recap —Why use Virtual Memory?

We want to run multiple programs on the computer
concurrently (multitasking)

? Each program needs its own separate memory region, so
physical resources must be divided

2 The amount of memory each program takes could vary

dynamically over time (and the user could run a different
mix of apps at once)

We want to use multiple types of storage (main
memory, disk) to increase performance and capacity

We don’t want the programmer to worry about this
72 Make the processor architect handle these details

TLB + Page Table + Main Memory + Cache

CPU generates virtual address
I Page l Offset l

Is page
table entry
for P in

Yes (Now have frame.)

IL"L'arr.el Offset |

Use P as index
into page table

Yes (Now have frame)
>
I Frame | Offse ’—I

Update TLB

[Read page from disk]

v Update Cache
Transfer P
(Update TLB J into memory

Restart access

Is
memory
full?

Yes Find victim
page and write
back to disk

v

vaenNrite victim page
_(Update page table](| with new page, P J

No

Computer Systems and Networks Spring 2012

Example — Access Time

Suppose we have a virtual memory (VM) system with a
TLB, cache, and page table. Also assume:

7
7
7

7

A TLB hit takes 10ns, and has a hit ratio of 92%
A cache hit takes 20ns (hit ratio 98%)

A physical memory reference takes 45ns (page fault rate
0.025%)

A disk reference takes 150ms (including loading the page
table and TLB)

For a page fault, the page is loaded from disk and TLB is
updated, and memory access restarts

How long does it take to access a word if it is not in
physical memory?

Example — Access Time

How long does it take to access a word if it is

Page in TLB (10ns) - no not in physical memory?

Page in physical memory (45ns) < no)

Read page from disk into memory :é
(150ms) = restart

72 Assumes a free page

Yes (Now have frame.)

table entry
for P in
TLB?

Use P as index
into page table

Yes (Now have frame) e
»| Update

Page in TLB (10ns) = yes

Block in cache (20ns) = no

Transfer P
into memory

Update TLB
A;

Restart access

Find victim
page and write
back to disk

Load block from physical memory
(45ns) - done

Overwrite victim page
with new page, P

Update page table

Total: 10ns + 45ns + 150ms + 10ns
+ 20ns + 45ns = 150,000,130ns

7 Akaalongtime

Example — Access Time

How frequently does this happen? (i.e. how often must we
go to disk?)

? TLB(10ns, 92%), Cache (20ns, 98%),
Memory (45ns, 1-0.025%), Disk (150ms)

Process
72 PageinTLB -2 92%
72 Page notin TLB (requires access to page table) > 8%
? Page notin page table (i.e. not in memory) - 0.025%
?” Page notin TLB and not in page table:

8% * 0.025% = .08 * .00025 = 0.00002 (or 0.002%)

What is the effective access time for a page fault?
2 .00002 * 150,000,130ns = 3,000.0026ns

.

Segmentation and Fragmentation

Computer Systems and Networks Spring 2012

Segmentation

Alternate way to implement virtual memory instead of pages:
segmentation

Idea: Instead of dividing memory into equal-sized pages,
virtual address space is divided into variable-length segments
(typically under the control of the programmer)

A segment is located through its entry in a segment table
Starting address of segment in main memory
?2 Size of segment

Page fault? Operating system searches for a location in
memory large enough to hold the segment that is retrieved
from disk.

Fragmentation

Both paging and segmentation can cause fragmentation

Paging is subject to internal fragmentation

? A process may not need the entire range of addresses
contained within the page

2 There may be many pages containing unused fragments
of memory

Segmentation is subject to external fragmentation

? Contiguous chunks of memory become broken up as
segments are allocated and deallocated over time

72 Fragmentation is “outside” the segment

Fragmentation

Example computer 4K
72 32K main memory 8K
?2 Divided into 8 page frames of 4K each
. 12K
The numbers at the right are memory
frame addresses 16K
20K
24K
28K
32K

Internal Fragmentation

Suppose there are four
processes waiting to be
loaded into the system with
memory requirements as P1l 8K
shown in the table

P2 10K

P3 9K

Process | Memory
Name Needed

All together, these processes
require 31K of memory

? This should all fit, right? P4 4K

Internal Fragmentation

When the first three processes are 4K
loaded, memory looks like this: Pl
8K
All of the frames are occupied by only P2
three of the processes 12K
P2
16K
p2
20K
Pl 8K P3
P2 | 10K 24K
P3
P3 9K 28K
P4 4K P3
32K

Internal Fragmentation

P4 has to wait for one of the other three 4K
processes to terminate, P1
2 There are no unallocated frames available - 8K
72 But there is enough free bytes in memory, 12K
we just can’t use them! P2
.. . 16K
This is an example of internal oo
fragmentation 50K
Pl 8K P3
p2 10K 24K
P3
P3 9K 28K
P4 4K P3
32K

External Fragmentation

Suppose that instead of e el ey
frames, our 32K system uses Naa (RS egme it S IS
segmentation

Pl S1 8K
The memory segments of g2 10K
two processes is shown in
the table at the right S3 SOK
72 42K of total segments with °%) g1 AK

these processes
S2 11K

The segments can be
allocated anywhere in
memory

External Fragmentation

All of the segments of P1 and one of the s1 4K
segments of P2 are loaded as shown at the
right. 8K
Segment S2 of process P2 requires 11K of P1 12K
memory, and there is only 1K free, so it must S2
wait 16K
Pl S1 8K . 20K
s2 10K 23
S3 OK 24K
P2 s1 4K P2 | 2gk
S2 11K S1

32K

External Fragmentation

Eventually, Segment 2 of Process 1 is no g 4K
longer needed, so it is unloaded
2 11K of free memory now available A 8K
But, Segment 2 of Process 2 cannot be loaded 10K 12K
because the free memory is not contiguous.
4 16K
Pl S1 8K
5 6 20K
S K p3
S3 OK 24K
P2 S1 4K
P4 28K
S2 11K
1K —

32K

External Fragmentation

Over time, the problem gets worse, 4K
resulting in small unusable blocks
scattered throughout physical memory

This is an example of external 12K
fragmentation
16K
Eventually, this memory is recovered
through compaction, and the process 20K
starts over
24K
28K

32K

Chapter 6 Summary

Done with Chapter 6!

Computer memory is organized in a hierarchy
72 Smallest, fastest memory at the top
? largest, slowest memory at the bottom

Cache
72 Gives faster access to main memory
? Cache maps blocks of main memory to blocks of cache memory

Virtual memory
72 Uses disk storage to give the illusion of having a large main memory
?2 Virtual memory maps page frames to virtual pages

Chapter 6 Summary

There are three general types of cache:
Direct mapped, Fully associative, and Set associative

Need replacement policies (i.e. which pages to evict?) for
7 Fully associative cache

? Set associative cache

2 Virtual memory

Replacement policies include LRU (least recently used), FIFO
(first-in, first-out), or random replacement

7 Need to take into account what to do with dirty blocks

All virtual memory must deal with fragmentation
72 Internal fragmentation for paged memory
? External fragmentation for segmented memory

