.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Virtual Memory

Schedule

Today and Monday
72 Chapter 6 — Virtual memory

Next Wednesday
?A Chapter 7 — Input / Output Systems

Next Friday (March 30th)
A Quiz #5 — Chapter 6 (Cache & Virtual Memory)

Virtual Memory

Computer Systems and Networks Spring 2012

Virtual Memory is a BIG LIE!

We lie to your application and
tell it that the system is simple:

7

7

Physical memory is infinite!
(or at least huge)

You can access all of physical
memory

Your program starts at
memory address zero

Your memory address is
contiguous and in-order

Your memory is only RAM
(main memory)

Virtual Memory

What the System Really Does

Virtual memory Physical
(per process) memory

Why use Virtual Memory?

We want to run multiple programs on the computer
concurrently (multitasking)

? Each program needs its own separate memory region, so
physical resources must be divided

2 The amount of memory each program takes could vary

dynamically over time (and the user could run a different
mix of apps at once)

We want to use multiple types of storage (main
memory, disk) to increase performance and capacity

We don’t want the programmer to worry about this
72 Make the processor architect handle these details

Cache Memory vs Virtual Memory

Goal of cache memory

? Faster memory access speed (performance)

Goal of virtual memory

72 Increase memory capacity without actually adding
more main memory

Data is written to disk
If done carefully, this can improve performance

If overused, performance suffers greatly!

? Increase system flexibility (as previously discussed)

Pages and Virtual Memory

Main memory is divided into “blocks” called pages
for virtual memory
72 Why use the term page instead of block?

This is a different concept than cache blocks!

Pages are larger — generally 4kB in size

Blocks are 64 bytes in size (on modern Intel)

#2 Datais moved between main memory and disk at a
page granularity

i.e. we don’t move single bytes around, but rather big
groups of bytes

Virtual Memory

Main memory and virtual memory are divided into equal
sized pages

The entire address space required by a process need not
be in memory at once

72 Some pages can be on disk
Push the unneeded parts out to slow disk
2 Other pages can be in main memory

Keep the frequently accessed pages in faster main
memory

The pages allocated to a process do not need to be
stored contiguously-- either on disk or in memory

Virtual Memory Terms

Physical address —the actual memory address in the real
main memory

Virtual address — the memory address that is seen in your
program

A We need some special hardware/software to map between
virtual addresses and physical addresses!

Page faults — a program accesses a virtual address that is not
currently resident in main memory (at a physical address)

2 The data must be loaded from disk!

Pagefile — The file on disk that holds memory pages
? Usually twice the size of main memory

Mapping: Virtual =» Physical Address

Page Table tracks location of each page (whether
on disk or in memory)

2 One page table for each active process (application)

Virtual Memory Physical Memory Page Page Table
0 0 Frame # Valid Bit
, 0 2 1
‘ 1 i 0
2 2 2 - 0
3 3 3 0 1
4 4 1 1
5 - 0
S 6 - 0
6 7 3 1
7

Mapping: Virtual =» Physical Address

A process — like your program — generates a virtual address (aka
“logical address”)

The operating system translates the virtual address into a
physical memory address

Virtual address is divided into two fields

? Page field — Page location of the address
? Offset field — Location of the address within the page

The logical page number (from the virtual address) is translated
into a physical frame number through a lookup in the page table

72 Page number = part of virtual address
72 Frame number = part of physical address

Mapping: Virtual =» Physical Address

Check the valid bit in the page table entry!
2 Validbit=0
Page fault!
Page is not in memory and must be fetched from disk

If necessary, a page is evicted from memory and is
replaced by the page retrieved from disk, and the valid
bitis setto 1

2 Validbit=1
Page is in main memory, and we know where!

Replace virtual page number with the physical frame
number from the page table

Data can be accessed by adding the offset to the physical
frame number

Mapping: Virtual =» Physical Address

Example:
? Byte-addressable system with 1024 byte pages
? Virtual address space of 8K; Physical address space of 4K

What do we know?

A We have 213/210 = 23 = 8 pages in virtual memory

? Virtual address has 13 bits (8K = 2%3): 3 bits for page and 10 bits for
offset

? Physical address has 12 bits: 2 for frame and 10 bits for offset

Virtual Address 13 Physical Address 1o
A A
() ()
Page Offset Frame Offset
L)\) \ J\ J

~

Y Y
3 10 2 10

Mapping: Virtual =» Physical Address

Suppose this system has the following page table:

7 What happens when program generates address
5459,,=1010101010011, = 1553,;?

Page Table
Valid
page Frame Bit Addresses

0 = 0 Page Base 10 Base 16
1 3 1 0 : 0 - 1023 0 - 3FF
2 0 7 1 : 1024 - 2047 400 - TFF
3 5 0 2 2048 - 3071 800 - BFF

3 3072 - 4095 c00 - FFF
4 = 0 4 4096 - 5119 1000 - 13FF
5 1 1 5 : 5120 - 6143 1400 - 17FF
6 2 1 6 6144 - 7167 1800 - 1BFF
7 = 0 7 7168 - 8191 1c00 - 1FFF

Mapping: Virtual =» Physical Address

What happens when the program generates
address 5459,,=1010101010011, = 15537

Virtual Address 13

A
(h
Page Offset
L JL J
Y Y
3 10

The high-order 3 bits of the virtual address are 101 (5)
This is the page number to lookup in the page table

Mapping: Virtual =» Physical Address

Virtual address 1010101010011,

Physical address 010101010011, = 1363,

? Page field 101 is replaced by frame number 01 through a
lookup in the page table

Page Table
Valid
page Frame Bit Addresses

0 7 0 Page Base 10 Base 16
1 3 1 0 : 0 - 1023 0 - 3FF
9 0 1 1 : 1024 - 2047 400 - TFF
3 = 0 2 : 2048 - 3071 800 - BFF

3 : 3072 - 4095 c00 - FFF
4 - 0 4 : 4096 - 5119 1000 - 13FF
5 1 1 5 : 5120 - 6143 1400 - 17FF
6 2 1 6 : 6144 - 7167 1800 - 1BFF
7 - 0 7 : 7168 - 8191 1c00 - 1FFF

Mapping: Virtual =» Physical Address

What happens when the program generates
address 1000000000100,?

Page Table
Valid
page Frame Bit Addresses

0 = 0 Page Base 10 Base 16
1 3 1 0 : 0 - 1023 0 - 3FF
2 0 7 1 : 1024 - 2047 400 - 7FF
3 = 0 2 2048 - 3071 800 - BFF

3 3072 - 4095 c00 - FFF
4 = 0 4 4096 - 5119 1000 - 13FF
> 1 1 5 5120 - 6143 1400 - 17FF
6 2 1 6 : 6144 - 7167 1800 - 1BFF
7 - 0 7 : 7168 - 8191 1c00 - 1FFF

Relationships (for Homework problem)

If data exists in main memory, it must have a valid
entry in the page table

? Entry not valid? Data must be paged to disk

You can’t have an entry in the cache that doesn’t
exist in main memory

7 i.e.if data gets paged out to disk, it is also removed
from the cache

? This makes sense — we only page out infrequently
accessed data to disk anyway!

19

Effective Access Time (again)

Computer Systems and Networks Spring 2012

Effective Access Time

Effective access time (EAT) takes all levels of memory
into consideration

? Previously we only included cache and main memory

72 Now we add page table translation and virtual memory
(disk)...

Example: Suppose a main memory access takes 200ns,
the page fault rate is 1%, and it takes 10ms to load a
page from disk

72 EAT =%mem(mem time) + %disk(disk time)
72 EAT =0.99(200ns + 200ns) + 0.01(10ms) = 100,396ns
7 Why is the memory time 200+200ns?

Effective Access Time

Why was the memory time 200+200ns?

? Evenif we had no page faults, the EAT would be 400ns
because memory is always read twice

First to access the page table
Second to load the page from memory.

Observation: Page table is read for every memory access!
(Yikes!!)

Suggestions to improve this?
? Make a special cache just for page table data

?2 Translation look-aside buffer (TLB)

Fully associative cache that only stores the mapping of
virtual pages to physical pages

Virtual Address

Page Offset

TLB Lookup

Flow Chart

L » TLB Hit

Main Memory
Pes : :)
Update \ 4 A

TLB '

1. Extract page number and offset from
virtual address

2. Search for the virtual page number in
the TLB (cache) ;

3. TLB Hit: If the (virtual page #, page Page Table
frame #) pair is found, add the offset to TLB -
the physical frame number and access e Memory
the memory location. Finished! |

4. TLB Miss: Go to the page table to get the
necessary frame number.

5. Pagein memory (page table valid): Use ;
the corresponding frame number and | «
add the offset to yield the physical Update . Update /' Load Page in
address. _I?;g: TLB * Physical Memory

6. Page notin memory: generate a page
fault and restart the access when the
page fault is complete

)

Frame Off

w
[[A]
ad

Physical Address

Y

Y

Y

Page Fault Secondary
(Needs OS Intervention) Memory

TLB + Page Table + Main Memory + Cache

CPU generates virtual address
I Page l Offset l

Is page
table entry
for P in

Yes (Now have frame.)

IL"L'arr.el Offset |

Use P as index
into page table

Yes (Now have frame)
>
I Frame | Offse ’—I

Update TLB

[Read page from disk]

v Update Cache
Transfer P
(Update TLB J into memory

Restart access

Is
memory
full?

Yes Find victim
page and write
back to disk

v

vaenNrite victim page
_(Update page table](| with new page, P J

No

Computer Systems and Networks Spring 2012

Example — Access Time

Suppose we have a virtual memory (VM) system with a
TLB, cache, and page table. Also assume:

7
7
7

7

A TLB hit takes 10ns, and has a hit ratio of 92%
A cache hit takes 20ns (hit ratio 98%)

A physical memory reference takes 45ns (page fault rate
0.025%)

A disk reference takes 150ms (including loading the page
table and TLB)

For a page fault, the page is loaded from disk and TLB is
updated, and memory access restarts

How long does it take to access a word if it is not in
physical memory?

Example — Access Time

How long does it take to access a word if it is

Page in TLB (10ns) - no not in physical memory?

Page in physical memory (45ns) < no)

Read page from disk into memory :é
(150ms) = restart

72 Assumes a free page

Yes (Now have frame.)

table entry
for P in
TLB?

Use P as index
into page table

Yes (Now have frame) e
»| Update

Page in TLB (10ns) = yes

Block in cache (20ns) = no

Transfer P
into memory

Update TLB
A;

Restart access

Find victim
page and write
back to disk

Load block from physical memory
(45ns) - done

Overwrite victim page
with new page, P

Update page table

Total: 10ns + 45ns + 150ms + 10ns
+ 20ns + 45ns = 150,000,130ns

7 Akaalongtime

Example — Access Time

How frequently does this happen? (i.e. how often must we
go to disk?)

? TLB(10ns, 92%), Cache (20ns, 98%),
Memory (45ns, 1-0.025%), Disk (150ms)

Process
72 PageinTLB -2 92%
72 Page notin TLB (requires access to page table) > 8%
? Page notin page table (i.e. not in memory) - 0.025%
?” Page notin TLB and not in page table:

8% * 0.025% = .08 * .00025 = 0.00002 (or 0.002%)

What is the effective access time for a page fault?
2 .00002 * 150,000,130ns = 3,000.0026ns

