.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Cache Memory

Schedule

Today
? Chapter 6 — Memory systems (caches)

Friday and Monday
?” Chapter 6 — Virtual memory

Next Wednesday
A Chapter 7 — Input / Output Systems

Next Friday (March 30th)
A Quiz #5 — Chapter 6 (Cache & Virtual Memory)

Recap — Searching Cache for Address "A"

Direct-Map Cache Fully Associative Cache
Decode A into tag, block, Decode A into tag and offset
and offset bits bits

Go to the block Search all blocks in cache for
? Does tag in block match matching tag (where valid

") . .
search tag: bit is also set
2 Isvalid bit set?

If match
If yes to both, match! e .
7 Retrieve data from offset 7 Retrieve data from offset

in block in matching block

Recap — Searching Cache for Address "A"

Set-Associative Cache

Decode A into tag, set, and
offset bits

Go to the set (of several blocks)
?2 Search all blocks in the set

? Does tagin block match
search tag?

2 s valid bit set?

If yes to both, match!

7 Retrieve data from offset in
block

Cache Replacement Policies

Computer Systems and Networks Spring 2012

Replacement Policy

In a fully associative or set associative cache, a
replacement policy (“algorithm”) is run whenever we
need to evict a block from cache

What would the perfect replacement policy be?

2 Look into the future to see which blocks won’t be needed
for the longest period of time — evict those first!

72 This is often called the “oracle”, as in a prophet...

The perfect replacement policy is impossible to
implement (unless you have a time machine), but it
serves as a benchmark to compare actual
implementable algorithms against

Replacement Policy

Algorithm 1
? Least recently used (LRU)

? Keeps track of the last time that a block was
assessed in the cache

? Evict the block that has been unused for the longest
period of time

Drawbacks?

2 Complexity! RU has to maintain an access history for
each block, which ultimately slows down the cache

Replacement Policy

Algorithm 2
? First-in, first-out (FIFO)

2 The block that has been in the cache the longest is
evicted, regardless of when it was last used

Strengths and weaknesses?
? Strengths — Easier to implement

72 Weaknesses — The oldest block in the cache might
be the most popular!

If we evict it and it is popular, we’ll get it back in the
cache soon enough...

Replacement Policy

Algorithm 3
7 Random replacement

? Picks a block at random and replaces it with a new
block

Strengths and weaknesses?
? Strengths — Simple to implement. Never thrashes

72 Weaknesses — Might evict a block that will be
needed often or needed soon

Cache and Writing

Up to now, we have talked about reading from
main memory

7 And getting faster reads via the cache!

What about writing to main memory?
?” Can we get faster writes with a cache?

Yes! We can write data not to main memory, but to
the (faster) cache instead!

Cache and Writing

Writing to the cache poses a problem, though

? If the cache block has been modified from what is in
memory, we can’t just evict it when we need space
— it must be written back to memory first

72 New term — “Dirty” blocks
Blocks that have been updated while they were in the
cache but not written back to main memory yet

?2 Cache replacement policies must take into account
dirty blocks when deciding who (and how) to evict
from the cache

Cache and Writing

Write Through

Updates cache and main
memory simultaneously on
every write

Pro — Simple!

Con — slows down the access
time on updates

? Usually negligible because
the majority of accesses
tend to be reads, not writes

Write Back

Updates memory only when
the block is selected for
replacement

Pro — memory traffic is
minimized

Con —The value in memory
does not always agree with the
value in cache (causing
problems in multi-core / multi-
processor systems with many
caches)

13

Memory Access Time

Computer Systems and Networks Spring 2012

Effective Access Time

The performance of hierarchical memory is measured by its
effective access time (EAT)

EAT is a weighted average

2 Takes into account the hit ratio and relative access times of
successive levels of memory

EAT for a two-level memory:
? EAT=H x AccessC + (1-H) x AccessMM
H is the cache hit rate

AccessC and AccessMM are the access times for cache and main
memory, respectively

? This equation can be extended to any number of memory
levels

Effective Access Time

Example computer system

2 Main memory access time: 200ns
Cache access time: 10ns

Cache hit rate: 99%

Suppose access to cache and main memory occurs
concurrently (i.e. the accesses overlap)

EAT = 0.99(10ns) + 0.01(200ns)
=9.9ns + 2ns
=11.9ns

Effective Access Time

Example computer system

2 Main memory access time: 200ns
Cache access time: 10ns

Cache hit rate: 99%

Suppose access to cache and main memory occurs
sequentially (i.e. the accesses do not overlap)

EAT = 0.99(10ns) + 0.01(10ns + 200ns)
=9.9ns + 2.1ns
=12ns

17

Cache Variations

Computer Systems and Networks Spring 2012

Cache Variations

Many variations on cache designs

Unified cache — both instructions and data are
cached together

Harvard cache — separate caches for data and
instructions

? Provides better locality (i.e. performance) but
increases complexity

?2 Can get a similar benefit by simply providing a larger
unified cache

Cache Example — Intel Core i7 g8ox

7 High-end 6 core processor with a sophisticated
multi-level cache hierarchy

7 3.5GHz, 1.17 billion transistors (!!!)

e-Me[fnfory Controller

====Shé'red L3 Cach»e : Shared ta Cache*"“"

nEmmmnE SRR LT [O g 323 g3c3 nn oo nn oo
TS

ane faeus|

o
(=1
-QA e,
=
mi"
o
=
‘G
4}
=
v 1
424
4]

eri&tlID andragPl

14 .
. - - el o - eed ouod peew oo - = e -y -y oo e e e et weed e weee |

Computer Systems and Networks Spring 2012

Cache Example — Intel Core i7 g8ox

Each processor core has its own a L1 and L2 cache
?” 32kB Level 1 (L1) data cache
8-way set associative, 64 byte block (“line”) size
?” 32kB Level 1 (L1) instruction cache
4-way set associative, 64-byte block size
? 256kB Level 2 (L2) cache (both instruction and data)
8-way set associative, 64-byte block size

The entire chip (all 6 cores) share a single 12MB
Level 3 (L3) cache

? 16-way set associative, 64-byte block size

Cache Example — Intel Core i7 g8ox

Access time? (Measured in 3.5GHz clock cycles)
? 4 cycles to access L1 cache

2 9-10 cycles to access L2 cache
? A48 cycles to access L3 cache

Smaller caches are faster to search
2 And can also fit closer to the processor core

Larger caches are slower to search

? Plus we have to place them further away

Cache Example — Intel Core i7 g8ox

The Intel cache hierarchy is inclusive

2 All data in a smaller cache also exists at the next
higher level

Other vendors (e.g. AMD) have exclusive caches

?” Only 1 copy of the data in any cache (i.e. if it’s in the
L1 cache, it cannot also be in the L2 or L3 cache)

Tradeoffs?

Circuit complexity
? Wasted cache memory space

