

Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific

Exam 1 Review

Exam 1 Basics

7 Topics

- **7** Chapter 2
 - Data representations
- **7** Chapter 3
 - Digital logic

Rules

- No calculators
- Closed book / notes / friend / Internet / etc...

Review Materials

- Things to study
 - Homework assignments
 - **₹** Solutions are posted in Sakai
 - Quiz 1 and 2
 - Solutions are posted in Sakai
 - Lecture notes
- Question format will be similar to quizzes
 - Mix of problems and short answer questions
 - Problems typically come from textbook...
 - **尽** Short answer questions typically come from lectures...

Chapter 2 – Data Representation

Convert 26.78125₁₀ to binary (max of 6 digits after binary point)

Ans: 11010.11001

⊘ Convert 110010011101₂ to hexadecimal

7 Ans: C9D₁₆

- Express 23₁₀ and -9₁₀ in 8-bit binary using signed-magnitude, 1's complement, and 2's complement format
- **Ans for 23:**
 - → Signed-magnitude: 00010111₂
 - One's comp: 00010111₂
 - **7** Two's comp: 00010111₂
- Ans for -9
 - → Signed-magnitude: 10001001₂
 - One's comp: 11110110₂
 - Two's comp: 11110111₂

Convert 26.78125₁₀ to IEEE 754 single-precision floating-point format (recall that 26.78125₁₀ = 11010.11001)

- Ans:
 - → Sign bit: 0 (i.e. positive)
 - Exponent: 10000011 (i.e. 127+4=131)
 - Significand: 1010110010....0 (for 23 bits)

Data Representation

- What is ASCII? EBCDIC? Unicode?
 - What do they do the same? Different?
 - Why are there three standards?

Chapter 3 – Digital Logic

Boolean Expressions

- In the Boolean expression F(x,y)=x+y, does this mean "add the value to x to the value of y?"
 - **尽** No: the + operator is OR!
- Order of operations: what do I do first? Second?

$$F(x, y, z) = \overline{xyz}$$

Equivalent way to write it:

$$F(x, y, z) = (xyz)'$$

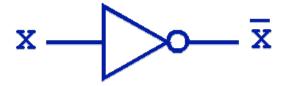
Boolean Expression

Simplify the following Boolean expression:

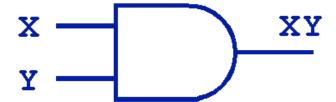
$$F(x, y, z) = xy + \overline{x}z + yz$$

$$F(x, y, z) = xy + \overline{x}z + (x + \overline{x})yz$$

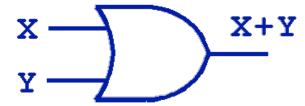
$$F(x, y, z) = xy + \overline{x}z + xyz + \overline{x}yz$$


$$F(x, y, z) = xy + xyz + \overline{x}z + \overline{x}yz$$

$$F(x, y, z) = xy + xyz + \overline{x}z + \overline{x}yz$$


$$F(x, y, z) = xy(1 + z) + \overline{x}z(1 + y)$$

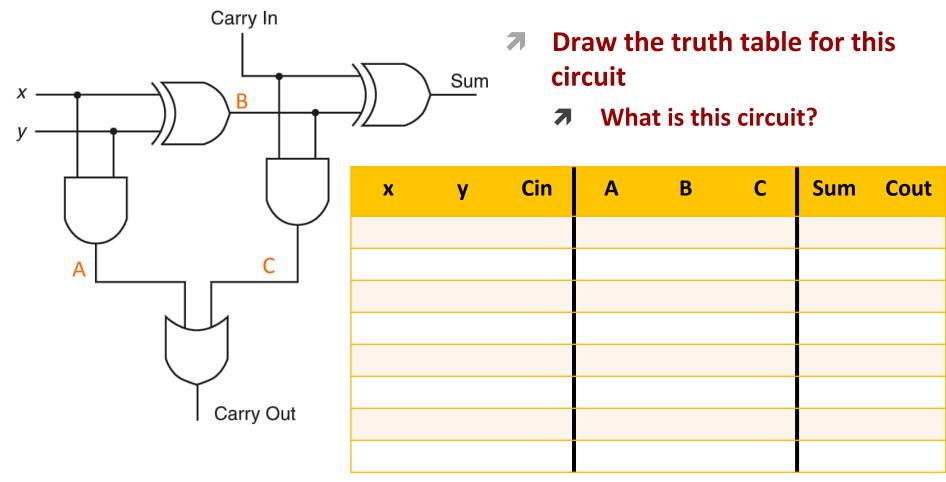
$$F(x, y, z) = xy + \overline{x}z$$


- What is this gate?
- What is its truth table?

- What is this gate?
- What is its truth table?

- What is this gate?
- What is its truth table?

- What is this gate?
- What is its truth table?



- What is this gate?
- What is its truth table?

- What is this gate?
- What is its truth table?

Digital Logic – Sequential

- Give the truth table for an SR, JK, and D flip flop
 - What does SR mean?
 - What does JK mean?
 - What does D mean?

w	x	у	z	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

Karnaugh Maps

- Construct a K-map from the truth table
- Simplify the resulting function

$$F(w,x,y,z) = yz+xz+w'x'y'z'+wx'y$$