.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Floating-Point Numbers

Today
7 Homework #2 assigned
72 Floating-Point Numbers

Friday
7 Floating-Point Numbers

Monday

Character representation

7 Homework #2 due

7 Quiz#l
Material from Homework #1 and #2
Material from Intro lecture

Schedule

Recap

Take a few minutes with your neighbor to convert
BAD,, to binary

.

N N 3N

B=11,,= 1011
A= 10,, = 1010
D=13,,= 1101
Soln=1011 1010 1101

Recap

7 With your neighbor, write 23 in the following
forms:

7 (1) Unsigned (2) Sign-magnitude
(3) One’s complement (4) Two’s complement

? What's the one thing | need to tell you first?
7 Let’s say: 12 bit long representation

71 Convert |23]| to binary: 10111 (i.e. 16+4+2+1)

2 Answers are all the same! 0000 0001 0111
2 Because number is positive

Computer Systems and Networks Spring 2012

Recap

7 With your neighbor, write -23 in the following forms
using a 12-bit long representation:

7 (1) Unsigned (2) Sign-magnitude

(3) One’s complement (4) Two’s complement
Unsigned — No representation possible
Sign-Magnitude: 1000 0001 0111

One’s complement: 1111 1110 1000
? (extend 23 to 12 bits, and then invert)

7 Two’s complement: 1111 1110 1001
? (one’s complement plus 1)

Computer Systems and Networks Spring 2012

Range

What is the smallest and largest 8-bit two’s
complement number?

” XXXXXXXX,
? Smallest (negative) #=10000000, =-128
A Llargest (positive) #=01111111, =127

Reminders

For positive numbers, the signed-magnitude, one’s
complement, and two’s complement forms are all
the same!

In one’s complement [/ two’s complement form, you
only need to modify the number if it is negative!

Computer Systems and Networks Spring 2012

Homework #1

Solutions will be posted in Sakai (resources folder)
2 Why Sakai? Only available to class members...

Floating-Point Numbers

Computer Systems and Networks Spring 2012

Why Floating-Point?

Existing representations deal with integer values only
72 Signed magnitude
72 One’s complement

72 Two’s complement
Adding in a fixed decimal point is awkward / inflexible

Scientific and business applications need a standardized
way to deal with real number values

72 Floating-point numbers

Floating-Point Representation

Do we need hardware or software?

? Clever programmers can do floating-point purely in
software

?” Drawbacks: Complicated, slow

Modern computers have specialized hardware that
directly performs floating-point arithmetic

Floating-Point Representation

Floating-point numbers allow an arbitrary number
of decimal places to the right of the decimal point.

? For example: 0.5x0.25=0.125

They are often expressed in scientific notation

A For example:
0.125=1.25x 10
5,000,000 = 5.0 x 10°

Floating-Point Representation

Computers use a form of scientific notation for
floating-point representation

Numbers written in scientific notation have three
components:

Sign Mantissa Exponent

+)1.25 x 1071

Floating-Point Representation

Computer representation of a floating-point number
consists of three fixed-size fields:

This is the standard arrangement of these fields:

Sign

| ‘Exponent ‘ Significand \

Note: Although “significand” and “mantissa’ do not technically mean the same
thing, many people use these terms interchangeably. We use the term “significand”
to refer to the fractional part of a floating point number.

Floating-Point Representation

The one bit sign field is the sign of the stored value.

The size of the exponent field determines the range
of values that can be represented

The size of the significand determines the precision
of the representation

Sign

| ‘Exponent ‘ Significand \

Floating-Point Errors

When discussing floating-point numbers, it is important
to understand the terms range, precision, and accuracy

The range of a numeric integer format is the difference
between the largest and smallest values that can be
expressed

Accuracy refers to how closely a numeric representation
approximates a true value

The precision of a number indicates how much
information we have about a value

17

.

Simplified Floating-Point Model

Computer Systems and Networks Spring 2012

Floating-Point Representation

We introduce a hypothetical “Simple Model” to explain
the concepts with smaller numbers

A Later we’ll discuss the real standard!

14 bit long floating-point number:
72 Thesign fieldis 1 bit

2 The exponent field is 5 bits
? The significand field is 8 bits

Sign

| ‘Exponent \ Significand \

Floating-Point Representation

The significand is always preceded by an implied
binary point, i.e. 0 . XXXXXXXXXX

72 Thus it always contains a fractional binary value

The exponent indicates the power of 2 by which the
significand is multiplied

Sign

| ‘Exponent ‘ Significand \

Floating-Point Representation

Example: Express 32, in the simplified 14-bit floating-
point model

We know that 32 is 2°. So in (binary) scientific notation
32=1.0x2>=0.1x2°

72 Ina moment, we’ll explain why we prefer the second
notation versus the first

Using this information, we put 110 (= 6,,) in the
exponent field and 1 (padded with 0’s) in the significand:

‘0|00110 |10000000\

Floating-Point Representation

Problem 1: We have many

ways to represent the exact oOloo110 10000000
same number

2 \Waste space
& Cause confusion 000111 01000000

72 Difficult to test for
equality

0O(010O00O0 001000O00O0
Figure: Multiple ways to
represent 32 using our
simplified model 0O([01001 00010000

72 By varying the exponent
and shifting

Floating-Point Representation

Problem 2: No way to express negative exponents
A Can’tstore 0.5 (=21)!

? The exponent field is an unsigned value

Sign

| ‘Exponent l Significand \

All of these problems can be fixed with no changes to our basic model

Floating-Point Representation

New Rule #1
72 The first digit of the significand must be 1

7 In our simple model, all significands must have the form
0. 1XXXXXXXX

72 No ones to the left of the radix point

This process is called normalization
? Produces a unique pattern for each floating-point number

Example: 4.5,,
=100.1 x 2°
=1.001 x 22
=0.1001 x 23.
The last expression is correctly normalized.

In our simple instructional model, we use no implied bits

Floating-Point Representation

New Rule #2: To allow for negative exponents, we will use a
biased exponent

What is a bias?

7 A number that is approximately midway in the range of values
expressible by the exponent

72 To determine the exponent to store, add the bias to your exponent

? To decode a floating-point number, subtract the bias from the value
in the exponent field

Simplified model with 5-bit exponent
72 Use a bias of 16 (called an excess-16 representation)

? Exponent values less than 16 are negative, representing fractional
numbers

Floating-Point Representation

Example: Express 32,, in the revised 14-bit floating-
point model

We know that 32 =1.0x2>=0.1x2°
? Significant is now normalized (0.1xxxxxx)

Use excess 16 biased exponent
A Add16to6=22,,(=10110,)

Final value saved to memory:

0110110 10000000

Floating-Point Representation

Example: Express 0.0625,, in the revised 14-bit
floating-point model

0.0625 is 24, In (binary) scientific notation,
0.0625=1.0x2%=0.1x 23 (normalized notation)

Use excess 16 biased exponent
A 16+-3=13,,(=01101,)

Final value saved to memory:

‘0101101|10000000\

Floating-Point Representation

Example: Express -26.625,, in the revised 14-bit floating-
point model

26.625,, = 11010.101, x 2°
Normalize =0.11010101 x 2~.

Use excess 16 biased exponent:
A 16+5=21,,(=10101,)

Also need a 1 in the sign bit (negative number)

Final value saved to memory:

1({10101 11010101

