

Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific

Floating-Point Numbers

Schedule

- **7** Today
 - **Ϡ** Homework #2 assigned
 - **₹** Floating-Point Numbers
- Friday
 - Floating-Point Numbers
- Monday
 - Character representation
 - **7** Homework #2 due
 - **7** Quiz #1
 - Material from Homework #1 and #2
 - Material from Intro lecture

Recap

■ Take a few minutes with your neighbor to convert BAD₁₆ to binary

$$B = 11_{10} = 1011$$

$$A = 10_{10} = 1010$$

$$D = 13_{10} = 1101$$

Recap

- With your neighbor, write 23 in the following forms:
 - (1) Unsigned(2) Sign-magnitude(3) One's complement(4) Two's complement
 - What's the one thing I need to tell you first?
 - **↗** Let's say: 12 bit long representation
- Convert |23| to binary: 10111 (i.e. 16+4+2+1)
- Answers are all the same! 0000 0001 0111
 - Because number is <u>positive</u>

Recap

- With your neighbor, write -23 in the following forms using a 12-bit long representation:
 - 7 (1) Unsigned (2) Sign-magnitude
 - (3) One's complement (4) Two's complement
- Unsigned No representation possible
- **尽** Sign-Magnitude: <u>1</u>000 0001 0111
- One's complement: 1111 1110 1000
 - (extend 23 to 12 bits, and then invert)
- Two's complement: 1111 1110 1001
 - (one's complement plus 1)

Range

- What is the smallest and largest 8-bit two's complement number?
 - **₹** XXXXXXXXX
 - **Smallest (negative)** $# = 100000000_2 = -128$
 - **T** Largest (positive) $\# = 011111111_2 = 127$

Reminders

For positive numbers, the *signed-magnitude*, *one's* complement, and *two's* complement forms are all **the same**!

In *one's complement / two's complement* form, you only need to modify the number if it is **negative**!

Homework #1

- Solutions will be posted in Sakai (resources folder)
 - Why Sakai? Only available to class members...

Floating-Point Numbers

Why Floating-Point?

- Existing representations deal with integer values only
 - Signed magnitude
 - One's complement
 - Two's complement
- Adding in a fixed decimal point is awkward / inflexible
- Scientific and business applications need a standardized way to deal with real number values
 - **7** Floating-point numbers

- Do we need hardware or software?
 - Clever programmers can do floating-point purely in software
 - Drawbacks: Complicated, slow
- Modern computers have **specialized hardware** that directly performs floating-point arithmetic

- Floating-point numbers allow an arbitrary number of decimal places to the right of the decimal point.
 - **7** For example: $0.5 \times 0.25 = 0.125$
- They are often expressed in scientific notation
 - **7** For example:
 - $70.125 = 1.25 \times 10^{-1}$
 - 7 5,000,000 = 5.0 \times 10⁶

- Computers use a form of scientific notation for floating-point representation
- Numbers written in scientific notation have three components:

- Computer representation of a floating-point number consists of three fixed-size fields:
- This is the standard arrangement of these fields:

Note: Although "significand" and "mantissa" do not technically mean the same thing, many people use these terms interchangeably. We use the term "significand" to refer to the <u>fractional</u> part of a floating point number.

- The one bit sign field is the sign of the stored value.
- The size of the *exponent* field determines the **range** of values that can be represented
- The size of the *significand* determines the **precision** of the representation

Floating-Point Errors

- When discussing floating-point numbers, it is important to understand the terms range, precision, and accuracy
- The **range** of a numeric integer format is the difference between the largest and smallest values that can be expressed
- Accuracy refers to how closely a numeric representation approximates a true value
- The **precision** of a number indicates how much information we have about a value

Simplified Floating-Point Model

- We introduce a hypothetical "Simple Model" to explain the concepts with smaller numbers
 - **▶** Later we'll discuss the real standard!
- **₹** 14 bit long floating-point number:
 - The sign field is 1 bit
 - → The exponent field is 5 bits
 - 7 The significand field is 8 bits

- The significand is always preceded by an implied binary point, i.e. 0.xxxxxxxxxx
 - Thus it always contains a fractional binary value
- The exponent indicates the power of 2 by which the significand is multiplied

- Example: Express 32₁₀ in the simplified 14-bit floating-point model
- We know that 32 is 2^5 . So in (binary) scientific notation $32 = 1.0 \times 2^5 = 0.1 \times 2^6$
 - In a moment, we'll explain why we prefer the second notation versus the first
- Using this information, we put 110 (= 6_{10}) in the exponent field and 1 (padded with 0's) in the significand:

0 00110 1000000

- Problem 1: We have many ways to represent the exact same number
 - Waste space
 - Cause confusion
 - Difficult to test for equality
- Figure: Multiple ways to represent 32 using our simplified model
 - By varying the exponent and shifting

- **Problem 2:** No way to express negative exponents
 - 7 Can't store 0.5 (=2⁻¹)!
 - The exponent field is an unsigned value

All of these problems can be fixed with no changes to our basic model

- New Rule #1
 - The first digit of the significand must be 1
 - In our simple model, all significands must have the form 0.1xxxxxxx
 - No ones to the left of the radix point
- This process is called normalization
 - Produces a unique pattern for each floating-point number
- Example: 4.5_{10} = 100.1×2^{0} = 1.001×2^{2} = 0.1001×2^{3} .

The last expression is correctly normalized.

In our simple instructional model, we use no implied bits

- New Rule #2: To allow for negative exponents, we will use a biased exponent
- What is a bigs?
 - A number that is approximately midway in the range of values expressible by the exponent
 - To determine the exponent to store, add the bias to your exponent.
 - To decode a floating-point number, subtract the bias from the value in the exponent field
- Simplified model with 5-bit exponent
 - Just a bias of 16 (called an excess-16 representation)
 - Exponent values less than 16 are negative, representing fractional numbers

- Example: Express **32**₁₀ in the revised 14-bit floating-point model
- We know that $32 = 1.0 \times 2^5 = 0.1 \times 2^6$
 - Significant is now normalized (0.1xxxxxx)
- Use excess 16 biased exponent
 - Add 16 to $6 = 22_{10} (=10110_2)$
- Final value saved to memory:

0 10110 10000000

- Example: Express **0.0625**₁₀ in the revised 14-bit floating-point model
- 0.0625 is 2^{-4} . In (binary) scientific notation, 0.0625 = $1.0 \times 2^{-4} = 0.1 \times 2^{-3}$ (normalized notation)
- Use excess 16 biased exponent

$$7 16 + -3 = 13_{10} (=01101_2)$$

Final value saved to memory:

0 01101 1000000

- Example: Express -26.625₁₀ in the revised 14-bit floating-point model
- 26.625₁₀ = $11010.101_2 \times 2^0$ Normalize = 0.11010101×2^5 .
- Use excess 16 biased exponent:

$$7 16 + 5 = 21_{10} (=10101_2)$$

- Also need a 1 in the sign bit (negative number)
- Final value saved to memory:

1 10101 110101