ELEC / COMP 177 – Fall 2012

Computer Networking → Ethernet

Schedule - Assignments

- Project #2 Due Tonight by midnight
- Homework #5 Due Tuesday, Nov 13th
- Later this semester:
 - Homework #6 Presentation on security/privacy
 - Topic selection Due Tuesday, Nov 20th
 - Slides Due Monday, Nov 26th
 - Present! Tuesday, Nov 27th (and Thursday)
 - Project #3 Due Tuesday, Dec 4th

Schedule - Topics

- Today Ethernet
- Thursday Putting it all together (Review)
- Next Week No class or Lab! (Traveling)
- Tuesday 20th Security / Firewalls
- Thursday 22nd Thanksgiving

Getting Help

This Week

- Change in office hours
- Thur 2-4pm
- Fri 1-3pm
- And (always), via email or other times by request

Next Week

Via email only (include current project code)

Project #2

Peer evaluations

How to Physically Connect Computers?

How to Build a Network?

- Four challenges
 - Encoding How to format bits on wire
 - Different solutions for different media (copper, optical, wireless)
 - Framing How to separate sequences of bits into independent message
 - Error Detection How to detect corrupted messages (and possibly repair them)
 - Media Access Control How to share a single wire or frequency among multiple hosts
 - Goals: Fair between users, high efficiency, low delay, fault tolerant

Standards that Solve Challenges

- Many competing standards with varying levels of complexity (for both wired and wireless networks)
 - Token Ring (IEEE 802.5)
 - Ethernet (IEEE 802.3)
 - Wi-Fi (IEEE 802.11 a/b/g/n)
- We focus on Ethernet networks in this course
 - Different standards made different choices, but design principles are similar

The Original Ethernet

Original picture drawn by **Bob Metcalfe**, inventor of Ethernet (1972 – Xerox PARC)

Ether – 19th century name for media enabling the propagation of light

The 10Mb/s Ethernet Standard

- IEEE 802.3
- Common MAC protocol and frame format
- Multiple physical layers to choose from
 - Bus architecture (shared)
 - 10Base-5 : Original Ethernet
 - Thick coaxial cable with taps every 2.5 meters to clamp on network devices
 - 10Base-2: Thin coaxial cable version with BNC "T" connectors
 - Star architecture (point-to-point)
 - 10Base-F / 10-Base-T standards Introduced later!

Challenge - Encoding

- How to turn bits into physical signals to send across wire?
- Data transmission across media always distorts data
 - Attenuation (amplitude reduction)
 - Distortion (change in shape)
- Encoding will make transmitted data resilient to these effects

Challenge - Encoding

- Common challenges to recovering data
 (ignoring any modulation issues, and only using discrete high and low signals)
 - Baseline Wander Receiver distinguishes between high and low by keeping an average.
 (Above average = 1, Below average = 0)
 - If data stream contains long periods of 1's or 0's, average can shift!
 - Clock Recovery
 - Too expensive to have dedicated clock wire
 - Must examine incoming data and derive clock
 - Derived clock can skew during long periods of all 1's or o's

Manchester Encoding (10Mb/s Ethernet)

- Exclusive-OR of input bit and clock
- Pulse decoded by direction of the midpulse transition rather than by its sampled level value
- No long periods without clock transition (prevents receiver clock skew and baseline wander)
- Drawback: Only 50% efficient!
 - Bit rate (actual data transfer) is half of baud rate (raw channel capacity)

Challenge – Ethernet Frame Format

Preamble

- Alternating 1's and o's provide data transitions for synchronization
- Used to train receiver clock-recovery circuit (critical since different transmitters will be using different clocks)
- SFD (Start of Frame Delimiter)
 - Indicates start of frame data. Always oxAB
- DA (Destination Address) / SA (Source Address)
- **Type**: Indicates data type or length
- Pad: Zeroes used to ensure minimum frame length of 64 bytes
- CRC (Cyclic Redundancy Check)
- Interframe Gap: Allow time for receiver to recover before next packet
 - Length: 96 times the length of time to transmit 1 bit
 - 9.6 µs for 10 Mbit/s Ethernet, 960 ns for 100 Mbit/s Ethernet, and 96 ns for 1
 Gbit/s Ethernet

Ethernet - Addressing

- All Ethernet devices have globally unique 48-bit address assigned by manufacturer
 - IEEE assigns OUI (Organizationally Unique Identifier) prefix to each manufacturer
 - Remaining bits are unique per device and chosen by manufacturer
- **Example:** $0 \times 00 07 E9 CB 79 4F$
 - $0 \times 00-07-E9 = Intel Corp (assigned by IEEE)$
 - Bit also indicates device is unicast, not multicast
 - 0x CB-79-4F = Unique address per NIC (picked by Intel)
- Special destination address to broadcast to all devices
 - 0x FF-FF-FF-FF-FF
- NIC is responsible for filtering packets
 - Address matches (or broadcast)? Send up to host
 - Otherwise, discard

Challenge – Error Detection

- How to detect errors in transmission across copper wire / fiber?
- Ethernet solution
 - 32-bit CRC (Cyclic Redundancy Check) stored in frame header
- n-bit CRC detects all error bursts not longer than n bits, and a 1-2⁻ⁿ fraction of all longer error bursts
 - Very useful since most transmission errors on a wire are bursty in nature!

Ethernet CRC

- Limitations of Ethernet CRC
 - No protection against deliberate corruption or alteration of message in transit – Not security!
 - No protection against corruption when packet is transferred through host systems, but only across wire
 - Can still have failures in NIC, memory, data bus (PCI) at <u>either end</u> of the network
 - Insufficient information to recover from error
- Design decision More efficient to retransmit upon error than to always send enough redundant bits to repair errors
 - Receiver discards invalid packet
 - Higher-level protocols might trigger retransmit by sender

Ethernet CRC

Why do I need a CRC? If Ethernet is unreliable, shouldn't I just let a higher-level protocol detect any errors?

Challenge – Media Access Control

- CSMA / CD Protocol for Ethernet
 - Carrier Sense Multiple Access with Collision Detection
 - Developed for use with single <u>shared</u> coaxial cable of original Ethernet
 - Decentralized technique No central arbitration, access tokens, or assigned time slots are needed to manage transmission

Ethernet - Media Access Control

- How to Transmit
 - Prepare frame for transmission
 - Check if media is idle ("Carrier Sense"). If not, wait until idle (plus interframe gap)
 - Transmit frame. Listen for any collisions and enter recovery mode
 - If no collision, finish transmitting
- Max frame size of 1500 bytes prevents one device from monopolizing network

Ethernet - Media Access Control

- How to Handle Collisions on Shared "Ether"
 - Continue transmission until minimum packet time is reached to ensure that all receivers detect the collision.
 - Wait random backoff time based on number of collisions
 - Backoff time exponentially increases if >1 collision per frame
 - Restart frame transmission again

Animation from http://www.datacottage.com/nch/eoperation.htm

Ethernet - Media Access Control

- Example of worst case collision
 - Two most-distant devices send a frame (A and D)
 - D doesn't start transmitting until frame from A has almost arrived
 - D detects collision almost immediately
 - A doesn't detect collision until data propagates all the way down the wire
- Maximum time for collision detection
 - Twice the signal propagation time across entire network (for signal from A to reach D and return with collision)

Minimum Packet Size (10Mb Ethernet)

- In practice, minimum packet size is 512 bits
 - Allows for extra time to detect collisions
 - Allows for "repeaters" that can boost signal

Ethernet – Media Access Control

- Ethernet device receives frames meeting any of the following conditions:
 - Frames addressed to its own MAC address
 - Frames addressed to the broadcast address
 - Frames addressed to the multicast address (if configured for this device)
 - All frames (in *promiscuous* mode)

Ethernet – MAC Goals

- Previously mentioned design goals Were they accomplished?
 - Fair between users? (What if users cheat?)
 - High efficiency?
 - Low delay?
 - Fault tolerant?

New physical layers

Scaling Ethernet

New Technology Needed

- No more single wire shared by all devices!
 - Too hard to increase to higher speeds
- Point-to-point networking
 - Still use MAC protocol and frame format
 - New network device: Ethernet repeater ("hub")
 - New physical layer
 - Straight-through cable (device ↔ hub) or crossover cable (device ↔ device)

New Physical Layers

- 100 Mb/s
 - 100Base-T4 (4 pairs copper, 100 meters max)
 - 100Base-TX (2 pairs high-quality copper, 100 meters max)
 - 100Base-FX (2 optical fibers)
 - ... and others
- 1000 Mb/s
 - 1000Base-T (4 pairs high-quality copper, 100 meters max)
 - 1000Base-FX (2 optical fibers)
 - ... and others
- Different physical layers (and encoding standards)
- Same frame format, error correction, and MAC protocol

Full Duplex Ethernet

- Simultaneous two-way transmission (send and receive)
- No more collisions or retransmissions! (at least due to Ethernet)
- Only useful over point-to-point links, not shared bus (or hub topology)
 - Design enabled by pervasive deployment of switches

Gigabit Ethernet – Same 4 Challenges

- Encoding
 - Encoding formats grow in sophistication as clock rate increases and stresses physical limits of copper/fiber media
 - 5-level Pulse Amplitude Modulation
 - 4-D 8-State Trellis Forward Error Correction Encoding
- Framing Same format
- Error Detection
 - CRC still used at high frame level
 - Encoding method has reserved illegal symbols that automatically indicate error (noise / corruption) if received
- Media Access Control
 - Point-to-point links remove need for CSMA / CD protocol (but it remains for backwards compatibility)

New network topologies

Scaling Ethernet

Original Ethernet Network

(10Base-5 or 10Base-2 - Shared Bus Architecture)

- Shared network limits throughput
- Frequent collisions reduce efficiency
- Poor Reliability Failure at one node can break shared link

Ethernet Star Topology

- Direct links instead of shared bus
- MAC protocol still operates as if Ethernet was a single wire
 - Collisions still possible
 - Network still shared
- Increase reliability from wire failure

Ethernet Hub - Operation

Problems with Ethernet Hub

- Security concerns with broadcasting
- Performance
 - Unnecessary broadcasts waste network capacity and cause congestion
 - Communication is serialized Independent connections between independent devices cannot occur in parallel
- Shared bus architecture limits maximum length of network
 - Due to MAC CSMA algorithm and signal propagation across entire network

Ethernet Switch

- New solution Bridges (aka Ethernet switches)
 - Allow multiple hub-based networks to be partitioned and interconnected
 - Reduces collisions
 - Allow parallel communication between independent devices
 - Allow full duplex communication between multiple pairs of devices

Ethernet Hub vs Switch

Ethernet Hub

A transmits to D D replies to A

Ethernet Switch

(assume learning already occurred)

A transmits to D
D replies to A
E transmits to B,
and A to C

Combining Hubs and Switches

- As cost decreased, hubs have been removed entirely
 - Gigabit+ networks are always switched
 - No more collisions!

Switch Design

- Internal FIFOs on each port buffer incoming packet
- Forwarding options
 - Store-and-Forward
 - Buffer entire packet before sending it to output port
 - Can verify packet CRC
 - Cut-Through
 - Buffer only long enough to examine destination address and then immediately stream data through to output port
 - Will fall back to store-and-forward if output port is busy
 - Cannot validate packet By the time error is detected, it is too late!

Ethernet Details

Six Design Challenges

Challenges for Ethernet Switch

- Forwarding Where does the next packet go?
- 2. Migration What if devices move on the network?
- 3. Congestion What if too much traffic is received?
- 4. Preventing Loops How to avoid forwarding packets in a big loop?
- Configuration How to determine speed of every device connected to switch
- Isolation How to isolate devices from each other (i.e. student computers from faculty computers)

Challenge 1 – Forwarding Packets

- Basic operation of Ethernet Switch
 - Examines header of each arriving frame
 - Learn that Ethernet SA is accessible from arriving port and update forwarding table
 - Examine Ethernet DA and search Forwarding Table on the switch
 - If in table, forward frame to the correct output port(s)
 - If not in table, broadcasts frame to all ports (except the one through which it arrived)

Switches - Learning Addresses

Switches – Forwarding Table

Forwarding Table Capacity

- At NewEgg in 2012:
 - \$25 Rosewill gigabit switch 8192 devices
 - Switches from better vendors: 16384 devices
 - Table capacity is rarely advertised anymore (all devices are "sufficient")
- Capacity is not infinite, but 16k+ devices is a very large network without routing
 - Except, perhaps, for a large cluster computer...

Forwarding Table Maintenance

- How to remove stale entries from the table?
 (e.g. device leaves the network)
 - Entries expire if no communication from device within last epoch
 - 5 minute timer is default on Cisco switches

Forwarding Table Maintenance

- What if the table is full? What entry do we remove to make room for a new one?
 - Round-robin (oldest device)
 - Pros: Simple!
 - Cons: Oldest entry might be very active device
 - Least-Recently Used (e.g. device that last transmitted a packet a long time ago)
 - Pros: High effectiveness (device not likely to transmit again soon)
 - Cons: Complicated Switch must count # of packets per device, and sort/ search the table to determine LRU device
 - None Don't learn that device until a table entry expires normally.
 Until then, broadcast any packets destined to it
 - Pros: Simple. Ensures old (but active) devices are not evicted
 - Cons: If new devices is high traffic, entire network will suffer (due to broadcasts) until there is space in forwarding table
 - Used by Cisco switches

Challenge 2 - Migration

- What if a network device (e.g. laptop computer) moves from one port to another? (on same switch)
 - Data is forwarded to wrong port until either:
 - Forwarding table entry expires
 - Device transmits a packet, and switch learns new port
- What if the device moves from one switch to another?
 - Have to wait for entry on old switch to expire (unless device happens to send a packet through that switch)

Challenge 3 - Switch Congestion

- What happens if the switch is too busy?
 - Example: Traffic from 10 input ports all heading out single output port
- Easiest solution
 - Switch drops traffic as internal buffers overflow
 - Devices don't know and keep transmitting!
 - A higher level protocol such as TCP might eventually notice and throttle back...
- Can we do better?
 - Ethernet flow control could throttle sender (only works across 1 wire, <u>not</u> end-to-end across Internet!)

Broadcasting on Topology with Redundant Paths

Host F sends message to Host J

Challenge 4: Problems with Loop Topology

- Broadcast Storm
 - Packets are forwarded forever
 - Ethernet has no timeto-live field
- Forwarding TableOscillation
 - Packets from host are received via multiple ports. Table is constantly updated

Topology Challenge – Loops!

- Can't we just avoid creating loops?
 - Redundant paths are useful for reliability
 - What if a loop is accidentally created? (Have you seen some of these wiring closets?)

Spanning Tree Protocol (IEEE 802.1D)

Principles

- Raw network is a mesh / graph
- Create a tree from this mesh
 - Tree is a subgraph that spans all the vertices (switches) without loops
- Disable all links not part of the tree prevents loops!
- Features
 - <u>Decentralized</u> Switches communicate among themselves via Bridge Protocol Data Units
 - Automatic No user configuration required
 - Fault tolerant Spanning tree will adapt if links fail (and can automatically use redundant links that were previously disabled)

Example Spanning Tree

Protocol operation:

- 1. Pick a root. The root forwards over all its ports.
- For each segment, pick a designated switch that is closest to the root.
- All switches on a segment send packets towards the root via the designated switch.

Example Spanning Tree

Spanning Tree Issues

- Spanning Tree is not guaranteed to be a minimum spanning tree
 - Packets might take a longer path than necessary
 - Root switch might not be anywhere near "center" of network
- Solution?
 - Manual tweaking Administrators can adjust device IDs to force different root

Challenge 5 – Switch Configuration

- Problem Each port on the switch might connect to a device running at different speed (10, 100, 1000Mbps) or duplex setting
- Do we want to configure each device manually?
 - Of course not.
- Solution: Auto-Negotiation
 - Upon power-up, each network device sends custom signals across link to other end announcing its capabilities
 - Each device listens and picks the highest mutually supported transmission mode
 - Format is backwards compatible down to 10Base-T, half duplex
- Modern switches have internal FIFOs that can buffer data between devices with varying performance capabilities
 - 1Gbps device → 100Mbps device flow control useful!

Challenge 6 – Device Isolation

- Imagine I have a campus network, and want to isolate a few devices on a "private network". How do I do it?
 - Buy more switches?
 - Could get expensive...
 - Imagine the mess in the wiring closet...

Challenge – Device Isolation

- Better idea Make the switch more intelligent and have it provide device isolation
- Virtual LAN (VLAN) technology
 - Virtualizes the network Each network device on a VLAN communicates as if they were connected to the same physical network, even if they are not
 - Can create a virtual LAN composed of machines from around the world

VLAN Overview

- Controlled by network switch
 - Each port is mapped to a VLAN
 - Forwarding / broadcast is only allowed to other ports on the same VLAN (provides isolation)
 - Spanning Tree Protocol can be run independently over each VLAN
 - Might even have different topology!
- Joining VLAN How to assign devices?
 - Static Port is permanently mapped to VLAN
 - Dynamic Based on MAC address or user authentication (e.g. Cisco CleanAccess)

VLAN Operation

- Standardized format: IEEE 802.1Q
 - TCI stores VLAN ID, frame priority level, and format bits
 - CRC is recalculated

Bytes:

7	1	6	6	2	2	2	0-1500	0-46	4
Preamble	SFD	DA	SA	Туре	TCI	Туре	Data	Pad	CRC