ELEC / COMP 177 – Fall 2011

# Computer Networking → Ethernet



### Schedule

- Project #2 Due Thursday, Nov 10<sup>th</sup>
  - By midnight
- Homework #5 Due Thursday, Nov 17<sup>th</sup>
- Later this semester:
  - Homework #6 Presentation on security/privacy
    - Topic selection Due Tuesday, Nov 22<sup>nd</sup>
    - Slides Due Monday, Nov 28<sup>th</sup>
    - Present! Tuesday, Nov 29<sup>th</sup> (and Thursday?)
  - Project #3 Due Tue, Dec 6<sup>th</sup>

## **How to Physically Connect Computers?**



#### How to Build a Network?

- Four challenges
  - Encoding How to format bits on wire
    - Different solutions for different media (copper, optical, wireless)
  - Framing How to separate sequences of bits into independent message
  - Error Detection How to detect corrupted messages (and possibly repair them)
  - Media Access Control How to share a single wire or frequency among multiple hosts
    - Goals: Fair between users, high efficiency, low delay, fault tolerant

## Standards that Solve Challenges

- Many competing standards with varying levels of complexity (for both wired and wireless networks)
  - Token Ring (IEEE 802.5)
  - Ethernet (IEEE 802.3)
  - Wi-Fi (IEEE 802.11 a/b/g/n)
- We focus on Ethernet networks in this course
  - Different standards made different choices, but design principles are similar

# The Original Ethernet



Original picture drawn by Bob Metcalfe, inventor of Ethernet (1972 – Xerox PARC)

Ether – 19<sup>th</sup> century name for media enabling the propagation of light





## The 10Mb/s Ethernet Standard

- IEEE 802.3
- Common MAC protocol and frame format
- Multiple physical layers to choose from
  - Bus architecture (shared)
    - 10Base-5 : Original Ethernet
      - Thick coaxial cable with taps every 2.5 meters to clamp on network devices
    - 10Base-2: Thin coaxial cable version with BNC "T" connectors
  - Star architecture (point-to-point)
    - 10Base-F / 10-Base-T standards Introduced later!





## Challenge - Encoding

- How to turn bits into physical signals to send across wire?
- Data transmission across media always distorts data
  - Attenuation (amplitude reduction)
  - Distortion (change in shape)
- Encoding will make transmitted data resilient to these effects

## **Challenge - Encoding**

- Common challenges to recovering data
   (ignoring any modulation issues, and only using discrete high and low signals)
  - Baseline Wander Receiver distinguishes between high and low by keeping an average.
     (Above average = 1, Below average = 0)
    - If data stream contains long periods of 1's or 0's, average can shift!
  - Clock Recovery
    - Too expensive to have dedicated clock wire
    - Must examine incoming data and derive clock
    - Derived clock can skew during long periods of all 1's or o's

#### Manchester Encoding (10Mb/s Ethernet)

- Exclusive-OR of input bit and clock
- Pulse decoded by direction of the midpulse transition rather than by its sampled level value
- No long periods without clock transition (prevents receiver clock skew and baseline wander)
- Drawback: Only 50% efficient!
  - Bit rate (actual data transfer) is half of baud rate (raw channel capacity)





## Challenge – Ethernet Frame Format

Bytes:



- Preamble
  - Alternating 1's and o's provide data transitions for synchronization
  - Used to train receiver clock-recovery circuit (critical since different transmitters will be using different clocks)
- SFD (Start of Frame Delimiter)
  - Indicates start of frame data. Always oxAB
- DA (Destination Address) / SA (Source Address)
- Type: Indicates data type or length
- Pad: Zeroes used to ensure minimum frame length of 64 bytes
- CRC (Cyclic Redundancy Check)
- Interframe Gap: Allow time for receiver to recover before next packet
  - Length: 96 times the length of time to transmit 1 bit
  - 9.6 µs for 10 Mbit/s Ethernet, 960 ns for 100 Mbit/s Ethernet, and 96 ns for 1
     Gbit/s Ethernet

## **Ethernet - Addressing**

- All Ethernet devices have globally unique 48-bit address assigned by manufacturer
- IEEE assigns OUI (Organizationally Unique Identifier) prefix to each manufacturer
  - Remaining bits are unique per device and chosen by manufacturer
- **Example:**  $0 \times 00 07 E9 CB 79 4F$ 
  - $0 \times 00 07 E9 = Intel Corp (assigned by IEEE)$ 
    - Bit also indicates device is unicast, not multicast
  - 0x CB-79-4F = Unique address per NIC (picked by Intel)
- Special destination address to broadcast to all devices
  - Ox FF-FF-FF-FF-FF
- NIC is responsible for filtering packets
  - Address matches (or broadcast)? Send up to host
  - Otherwise, discard

## Challenge – Error Detection

- How to detect errors in transmission across copper wire / fiber?
- Ethernet solution
  - 32-bit CRC (Cyclic Redundancy Check) stored in frame header
- n-bit CRC detects all error bursts not longer than n bits, and a 1-2<sup>-n</sup> fraction of all longer error bursts
  - Very useful since most transmission errors on a wire are bursty in nature!

#### **Ethernet CRC**

- Limitations of Ethernet CRC
  - No protection against deliberate corruption or alteration of message in transit – Not security!
  - No protection against corruption when packet is transferred through host systems, but only across wire
    - Can still have failures in NIC, memory, data bus (PCI) at <u>either end</u> of the network
  - Insufficient information to recover from error
- Design decision More efficient to retransmit upon error than to always send enough redundant bits to repair errors
  - Receiver discards invalid packet
  - Transmitter can optionally retransmit packet (but this is not specified in Ethernet protocol)
- Calculated by NIC in real-time as packet is transmitted

#### **Ethernet CRC**

Why do I need a CRC? If Ethernet is unreliable, shouldn't I just let a higher-level protocol detect any errors?

## Challenge – Media Access Control

- CSMA / CD Protocol for Ethernet
  - Carrier Sense Multiple Access with Collision Detection
  - Developed for use with single <u>shared</u> coaxial cable of original Ethernet
  - Decentralized technique No central arbitration, access tokens, or assigned time slots are needed to manage transmission

#### Ethernet - Media Access Control

- How to Transmit
  - Prepare frame for transmission
  - Check if media is idle ("Carrier Sense"). If not, wait until idle (plus interframe gap)
  - Transmit frame. Listen for any collisions and enter recovery mode
  - If no collision, finish transmitting
- Max frame size of 1500 bytes prevents one device from monopolizing network



#### Ethernet - Media Access Control

- How to Handle Collisions on Shared "Ether"
  - Continue transmission until minimum packet time is reached to ensure that all receivers detect the collision.
  - Wait random backoff time based on number of collisions
    - Backoff time exponentially increases if >1 collision per frame
  - Restart frame transmission again



Animation from http://www.datacottage.com/nch/eoperation.htm

#### Ethernet - Media Access Control

- Example of worst case collision
  - Two most-distant devices send a frame (A and D)
  - D doesn't start transmitting until frame from A has almost arrived
  - D detects collision almost immediately
  - A doesn't detect collision until data propagates all the way down the wire
- Maximum time for collision detection
  - Twice the signal propagation time across entire network (for signal from A to reach D and return with collision)



#### Minimum Packet Size (10Mb Ethernet)



- In practice, minimum packet size is 512 bits
  - Allows for extra time to detect collisions
  - Allows for "repeaters" that can boost signal

#### Ethernet – Media Access Control

- Ethernet device receives frames meeting any of the following conditions:
  - Frames addressed to its own MAC address
  - Frames addressed to the broadcast address
  - Frames addressed to the multicast address (if configured for this device)
  - All frames (in *promiscuous* mode)

## Ethernet – MAC Goals

- Previously mentioned design goals Were they accomplished?
  - Fair between users? (What if users cheat?)
  - High efficiency?
  - Low delay?
  - Fault tolerant?

## Recap

- Four Networking Challenges
  - Encoding How to format bits on wire
  - Framing How to separate sequences of bits into independent message
  - Error Detection How to detect corrupted messages (and possibly repair them)
  - Media Access Control How to share a single wire or frequency among multiple hosts

#### **Broader Picture**

- Where does Ethernet fit in the big picture?
- Media Access Control
  - Challenge: Who can transmit over a shared channel
  - Channel Partitioning
    - Divide channel into smaller "pieces" (time slots, frequency, code)
    - Allocate piece to node for exclusive use

#### Random Access

- Channel not divided, allow collisions
- "Recover" from collisions

#### "Taking turns"

 Nodes take turns, but nodes with more to send can take longer turns

## **Broader Picture**

- Channel Partitioning (time, frequency)
  - Optical networks for telecom (FDMA)
- Random Access
  - CSMA
    - Traditional Ethernet
    - 802.11 wireless
- "Taking turns"
  - Bluetooth, IBM Token Ring