ELEC/COMP 177 —Fall 2012

Computer Networking
=>» Sockets

Recap — Network Model

Application Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Recap — Physical Layer

Application Layer
Transport Layer
Network Layer

Link Layer
Physical Layer

"Bits on a wire” Encoding schemes fight:
attenuation
distortion
clock skew

Recap — Link Layer

Application Layer
Transport Layer
Network Layer

Link Layer ; Transfer
Ethernet! — nbeeigvk\llsf):s E
Framing MAC addresses
Media Access
Control

Error Detection Hubs & Switches

Recap — Network Layer

Application Layer
Transport Layer

Network Layer
End-to-End

— packet :
IP — Internet Protocol! =~ transfer -

o

> |

Packet Headers ICMP for error Routers
reporting and

IP Addresses router signaling Routing Protocols

Recap — Application and Transport

Layers

Application Layer

HTTP FTP POP

IMAP DNS SSH

Sockets

Transport Layer End-to-End

message
TCP UbP transfer

Why Do We Have Sockets?

Challenge — Inter-process communication
A process is an independent program running
on a host

Separate memory space
How to processes communicate with other
processes

On the same host?

On different hosts?
Send messages between each other

What is a Socket?

An interface between process (application)
and network

The application creates a socket

The socket type dictates the style of
communication
Reliable vs. best effort
Connection-oriented vs. connectionless

Once configured the application can
Pass data to the socket for network transmission

Receive data from the socket (transmitted
through the network by some other host)

What is a Socket?

Process sends/receives) "

. ost or ost or
messages to/from its socket cerver server
Socket analogous to door

sending process shoves controlled by =
message out door & app developer O
process process
sending process relies on " .
transport infrastructure on ~ _[socket| socket|
other side of door which TCP with TCP\+N|th
brings message to socket at |buffers, | IS buffers,
receiving process variables |’ variables
API allow customization of
socket controlled
Choose transport protocol by OS

Choose parameters of
protocol

10

Addressing Processes

To receive messages, each process on a host
must have an identifier

IP addresses are unique

Is this sufficient?
No, there can thousands of processes running
on a single machine (with 1 IP address)
ldentifier must include

IP address

and port number (example: 8o for web)

Port o

Each host has

65,536 ports o _
Some ports :
are reserved Port 65535
for specific apps

FTP (20, 21), Telnet (23), HTTP (80), etc...
Outgoing ports (on clients) can be
dynamically assigned by OS in upper region
(above 49,152) — called ephemeral ports
See http://en.wikipedia.org/wiki/List_of TCP_and_UDP_port_numbers

Client versus Server Processes

Client process
Process that initiates communication
Server process
Process that waits to be contacted
How does this change in P2P (peer-to-peer)
applications?
Those applications contain both client and server
processes

Application-Layer Protocol

Sockets just allow us to send raw messages
between processes on different hosts

Transport service takes care of moving the data
What exactly is sent is up to the application

An application-layer protocol
HTTP, IMAP, Skype, etc...

Application-Layer Protocol

Both the client and server speaking the protocol
must agree on

Types of messages exchanged
e.g., request, response
Message syntax

What fields are in messages
How fields are delineated

Message semantics
Meaning of information in fields

Rules for when and how processes send and respond
to messages

15

Transport Service

What kind of transport service do applications need?
Data loss — OK or forbidden?

Some apps can tolerate some loss

Other apps requires 100% reliable data transfer
Latency — OK, or bad?

Some apps require low delay to be effective
Throughput

Some apps require minimum amount of throughput to be
effective

Other apps (“elastic apps”) utilize whatever throughout is
available

Security?
Some apps require encyption

16

Internet Transport Protocols

TCP SERVICE

Connection-oriented

Setup required between client
and server processes
Reliable transport between
sending and receiving process
Flow control
Sender won't overwhelm
receiver
Congestion control
Throttle sender when network
overloaded
Does not provide
Timing, minimum throughput
guarantees, security

UDP SERVICE

Unreliable data transfer

between sending and

receiving process

Does not provide
Connection setup

Reliability Why
Flow control bother
Congestion control ~ with UDP
Timing then?
Throughput guarantee
Security

17

Socket Programming

Goal: learn how to build client/server
application that communicate using sockets

Socket API
Introduced in
BSD4.12 UNIX, 1981 A application-created,

- - OS-controlled interface (a
Client/server paradigm *door™ into which
Two types of transport application process can both
services via socket API: send and receive messages

to/from another application

UubP process

TCP

18

Socket Programming Basics

Server must be running
before client can send
anything to it

Server must have a
socket (door) through
which it receives and
sends messages
Similarly client needs a
socket

Socket is locally
identified with a port
number

Analogous to the apt # in
a building
Client needs to know
server |P address and
socket port number

How do we find this?

19

Socket Programming with UDP

UDP: no “connection” between client and server
No handshaking

Sender explicitly
UDP provides unreliable transfer

attaches |P addr.ess _ of groups of bytes ("datagrams”)
and port of destination between client and server

to each message

OS attaches IP address and port of sending socket to
each segment

application viewpoint

Server can extract IP address, port of sender from
received segment

20

Client/Server Socket Interaction

with UDP

Server Client

Create server socket, port= x Create client socket

Create datagram with server

IP and port=x, then send datagram
via client socket
Read datagram from socket

write reply to server socket
with client IP and client

port read datagram from client socket

close client socket
close server socket

21

UDP Question

Can the client send a segment to server
without knowing the server’s IP address
and port number?

Could use broadcast IP address of the subnet
to get around lack of IP address knowledge...

No way to avoid knowing port number...

UDP Observation

Each UDP message is self-contained and

complete
Each time you read from a UDP socket, you

get a complete message as sent by the
sender

That is, assuming it wasn’t lost in transit!
Think of UDP sockets as putting a stamp on a
letter and sticking it in the mail

Socket Programming using TCP

TCP service: reliable transfer of

another

controlled by

application

developer ¥

controlled by
operating
system

A

A

A

\

process

TCP with
buffers,

variables

from one process to

host or
server

internet

process

TCP with
buffers,

variables

host or
server

controlled by
application
developer

controlled by
operating
system

24

Socket Programming

Client must contact server When contacted by client,
Server process must first be server TCP creates new socket
running for server process to
Server must have created communicate with client
socket (door) that welcomes allows server to talk with
client’s contact multiple clients

Client contacts server by: source port numbers used to
Creating client-local TCP distinguish clients
socket
Specifying IP address, port application viewpoint

number of server process
When client creates socket:
client TCP establishes
connection to server TCP

TCP provides reliable, in-order
transfer of bytes ("pipe”)
between client and server

25

Client/Server Socket Interaction

with TCP

Server Client(s)

Create server socket, port=x, for
incoming request(s)

Wait for incoming TCP Create socket
. * ————— # /i
connection requests

connection setup Connect to server IP, port=x
on server socket

Send request using client socket
Read request from /
connection socket

Write replyto —
connection socket

— Read reply from client socket

Close connection socket Close client socket

26

What is a Stream?

A stream is a sequence of characters that
flow into or out of a process.

An input stream is attached to some input
source for the process, e.qg., keyboard or
socket.

An output stream is attached to an output
source, e.g., monitor or socket.

TCP Observations

TCP sockets are stream based

At the receiver, each read on a UDP socket is not
guaranteed to produce the same number of bytes as
were sent by the transmitter

All you know is that you'll get the next set of bytes
Keep reading, and eventually you'll get them all

Your application has to have some way to separate a
stream of bytes into discrete messages

Server has two types of sockets
One that listens for incoming connections
One on a per-client basis after a connection is opened

28

Upcoming Events

Class

Topics for next week: Transport Layer operation
(TCP and UDP in detail)

Lab

This afternoon @ 2pm
Homework 2

Assigned next Tuesday
Due in one week

Haven’t posted it yet!

