.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Cache Memory 2

Schedule

This week
? Chapter 6 — Memory systems (caches)

Next Tuesday
? Exam 2 — Tuesday, Nov 1st

Next Thursday
?2 Chapter 6 — Virtual memory

Similar format as last time
2 Closed notes, closed book, no calculator, etc...
72 | will provide Table 4.7 (MARIE ISA)

Chapter 4 — On the exam!

7?2 MARIE architecture
Major components and operation

2 MARIE programs
“Write a complete program that does XYZ”
Subroutines, indirect instructions, etc..

72 “You be the assembler”

Chapter 5 — On the exam!

Endianness

Infix and postfix notation

Memory addressing modes

Pipelines

Instruction sets
0-address machines (i.e. stack machines)
1-address machines (i.e. accumulator machines)

2-address and 3-address machines (general purpose
register machines)

?2 7 different instruction types (data movement, arithmetic,
etc...)

N N NI

Recap — 50 word Problem

In computer architecture, hazards are opportunities
for data corruption and incorrect calculations if a
naive pipeline design does not detect specific error
conditions and accommodate them, potentially by
introducing delays ("stalls") in the pipeline.

What is a

72 Data hazard?

Structural hazard?
72 Control hazard?

Recap — 50 word Problem

Data hazards represent obstacles preventing
perfect parallel execution of instructions, such as
when one instruction depends on a result produced
by a previous instruction that has not yet finished
(a data hazard), when multiple instructions rely on
the same hardware element like a shared memory
(a structural hazard), or when the next pipeline
instruction cannot be immediately determined due
to a yet-unresolved branch (a control hazard).

2 66 words

Recap - Cache

Which is bigger — a cache or main memory?
2 Main memory

Which is faster to access — the cache or main memory?

? Cache —Itis smaller (which is faster to search) and closer
to the processor (signals take less time to propagate to/
from the cache)

Why do we add a cache between the processor and
main memory?

? Performance — hopefully frequently-accessed data will be
in the faster cache versus slower main memory

Recap — Cache

Which is manually controlled — a cache or a
register?

#” Cache is automatically controlled by hardware

? Registers (typically) are manually controlled by the
assembly language program

Suppose a program wishes to read from a

particular memory address. Which is searched first
— the cache or main memory?

A Search the cache first — otherwise, there’s no
performance gain

Recap — Cache

Suppose there is a cache miss (data not found)
during a 1 byte memory read operation. How
much data is loaded into the cache?

?2 Trick question — we always load data into the cache

1 block at a time. (Block size varies — 64 bytes on a
Core i7 processor)

Recap — Direct Mapped Cache Search

Take the main memory address of desired data

1. Split into tag, block, and offset fields (varies by cache and
block size)

Go to the indicated block in the cache

Does the tag saved in the cache match the search tag?
Is the block marked as valid?

1. Yes on both —we have a cache hit! ©

Retrieve the data (go to the byte/word indicated by offset)
2. Otherwise, we have a cache miss! ®

Need to go to main memory and get the data

Load in the full block from main memory into the cache

Example 1 — Hit Ratio

Computer design

72 Main memory: 256 bytes
?2 Direct mapped cache

?” Cachessize: 4 blocks

72 Block size: 4 bytes

Computer program accesses (in order) memory
locations

2 O0xAA, F5, 53, 1C, 8A, 8B, 8C, CD, E4, E5, E7, E9, CF, DO

Questions
72 What is the hit ratio?
72 What are the final cache contents?

Example 1 — Hit Ratio

Step 1 — Determine partitioning of address bits

Tag field: 4 bits

72 All remaining bits (memory addresses are 8 bits
total)

Block field: 2 bits

2 To select between 4 blocks in cache

Offset field: 2 bits

2 Toselect between 4 bytes in each block

Example 1 — Hit Ratio

Step 2 — Partition all addresses according to fields
AA=1010 10 10 CD=1100 11 01
F5=1111 01 01 E4 =1110 01 0O
53=0101 00 11 E5=1110 01 01
1C=0001 11 0O E/7=1110 01 11
BA=1000 10 10 E9=1110 10 01
8B=1000 10 11 CF=1100 11 11
8C=1000 11 00 DO=1101 00 0O

A X N N N NN

Example 1 — Hit Ratio

Step 3 — Determine what other bytes are in the same
block that is being accessed (vary the offset field)

7 Example: AA > 1010 10 00 (A8) to 1010 10 11 (AB)

For each address accessed, the full block range is:

72 AA=A8-AB CD=CC-CF
2 F5=F4-F7 E4 =E4-E7
A 53=50-53 E5= E4-E7
2 1C=1C-1F E7=E4—-E7
2 B8A=83-8B EQO=E8—EB
72 38B=88-8B CF=CC-CF
A 38C=8C-8F DO=D0-D3

Example 1 — Hit Ratio

Draw a table to help keep track of cache contents

2 The actual data is irrelevant for this problem, and is
not shown...

Block O

Block 1

Block 2

Block 3

Tag:
Valid?
Memory range:

Tag:
Valid?
Memory range:

Tag:
Valid?
Memory range:

Tag:
Valid?
Memory range:

Example 1 — Hit Ratio

Step 4 — Fill in the cache by processing each memory address in sequence

7

.

Load AA
Block 2, tag A = Miss, valid bit not set = load A8 — AB
Load F5
Block 1, tag F = Miss, valid bit not set > Load F4 — F7
Load 53
Block 0, tag 5 = Miss, valid bit not set 2 Load 50 — 53
Load 1C
Block 3, tag 1 = Miss, valid bit not set > Load 1C - 1F
Load 8A
Block 2, tag 8 2 Miss, tag doesn’t match = Load 88 — 8B (replaces A8-AB)
Load 8B
Block 2, tag 8 > Hit!
Load 8C
Block 3, tag 8 2> Miss, tag doesn’t match = Load 8C — 8F (replaces 1C-1F)

Example 1 — Hit Ratio

Step 4 continued...

7 Load CD

Block 3, tag C = Miss, tag doesn’t match - Load CC-CF
. Load E4

Block 1, tag E 2 Miss, tag doesn’t match - Load E4 — E7
7 Load E5

Block 1, tag E > Hit!
7 Load E7

Block 1, tag E = Hit!
. Load E9

Block 2, tag E = Miss, tag doesn’t match - Load E8 — EB
7 Load CF

Block 3, tag C = Hit!
7 Load DO

Block 0, tag D = Miss, tag doesn’t match - Load DO — D3

Example 1 — Hit Ratio

Step 5 — Count the number of hits and total
accesses

2 4 hitsin 14 accesses: hit ratio = 28.57%

Block O

Block 1

Block 2

Block 3

Tag: D
Valid? Yes
Memory range stored here: DO-D3

Tag: E
Valid? Yes
Memory range stored here: E4-E7

Tag: E
Valid? Yes
Memory range stored here: E8-EB

Tag: C
Valid? Yes
Memory range stored here: CC-CF

Recap - Cache Thrashing

Main disadvantage of direct mapped cache
2 Each main memory block can only go one place in
the cache

? Possible to have “thrashing” (where the cache
continually evicts and replaces blocks)

Other (more sophisticated) cache mapping schemes
prevent this kind of thrashing

20

Fully Associative Cache

Computer Systems and Networks Fall 2011

Fully Associative Cache

ldea: instead of placing memory blocks in specific
cache locations (based on memory address), allow
a block to go anywhere in the cache

? The cache would have to completely fill up before
any blocks are evicted

New design: fully associative cache

Memory address is partitioned into only two fields
2 Tag and Offset

Fully Associative Cache

Example for 14-bit memory addresses
?” Cache size: 16 blocks
7 Block size: 8 (23 = 8, thus 3 bits for offset)

11 bits 3 bits

Tag Offset

< 14 bits >

How to retrieve?
? Search all tags in parallel!
? This requires special, costly hardware (i.e. a CAM)

Fully Associative Cache

The block that is evicted from a cache is the victim block

Direct-Mapped cache

2 The victim is always the cache block with the matching
block number

Fully-Associated cache
72 No fixed mapping
2 How does hardware pick a victim?

There are a number of ways to pick a victim
? Discuss later in this chapter

24

Set Associative Cache

Computer Systems and Networks Fall 2011

Set Associative Cache

Set associative cache

? Hybrid between direct mapped cache and fully associative
cache

? Reduces hardware complexity and improves performance

N-way set associative cache (where N is a number, i.e. 2)

7 Instead of mapping anywhere in the cache, a memory
reference can map only to the subset of cache slots

?2 Similar to direct mapped cache
Memory reference maps to a limited number of locations
?2 Similar to fully associated cache

Memory reference maps to more than one potential location
(so we need to search in parallel)

Set Associative Cache

The number of cache blocks per set can vary

Tag
o Block 0
Example: 2-way set associative cache | Set 0
. . Ta
? Each set contains two different memory 2 Block 1
blocks
Tag
Block 2
Tag Tag » Set 1
Set 0 Block 0 Block 1 Tag
Block 3
Tag Tag
Block 3 Tag
Set 1 Block 2 Block 4
Tag » Set 2
Set 2 Block 4 Block 5 Tag
Block 5

Logical view ' Linear view

Set Associative Cache

Memory references are divided into three fields
2 Tag - Uniquely identifies the memory address

2 Set - New! Which set does the address map to?
? Offset — Chooses the word within the cache block

Example 2 — Set Associative Cache

Memory configuration

? 2-way set associative cache

A Word-addressable main memory of 214 words
? Cache size: 16 blocks

2 Block size: 8 words

What do we know about the main memory and
cache?

Example 2 — Set Associative Cache

What do we know about the main memory and cache?
? Cache has 16 blocks

Each set has 2 blocks
There are 8 sets in cache
? Divide up address
Set field is 3 bits (23 = 8 sets)
Offset field is 3 bits (23 = 8 words in a block)
Tag field is 8 bits (all remaining bits from 14-bit long address)

8 bits 3 bits 3 bits

Tag Set Offset

< 14 bits >

Example 3 —Set Associative Cache

Memory configuration

72 4-way set associative cache
A 22*words of main memory
? Cache size: 128 blocks

2 Block size: 8 words

How many blocks of main memory are there?
? Each block contains 8 (23) words
2 2>*words / 23 words per block = 22! blocks

Example 3 —Set Associative Cache

Memory configuration

72 4-way set associative cache
2 2>*words of main memory
?” Cachessize: 128 blocks

?2 Block size: 8 words

What is the format of a memory address as seen by the

cache?

72 Offset field: 3 bits (to specify one of the 8 words in each
block)

2 Setfield: 5 bits (128 total blocks / 4 blocks per set = 32
sets)

72 Tagfield: 16 bits (remaining bits of 24-bit address)

Example 3 —Set Associative Cache

Memory configuration

72 4-way set associative cache
A 22*words of main memory
? Cache size: 128 blocks

2 Block size: 8 words

To what cache set will address 0x138F29 map?
2 0x138F29=00010011100011110010 1001

? Setfieldis 00101 =Set 5
Any one of the 4 blocks within that set!

Example 4 — Hit Ratio

Suppose a program loops 2 times, accessing even
addresses in memory from 6 to 40 inclusive.

Compute the hit ratio for a 2-way set associative
cache with a total of 16 two-word blocks

2 Assume all cache contents are initially invalid

72 Assume oldest cache entry is victim

Example 4 — Hit Ratio

2-way set associative cache with 16 two-word
blocks

? 16 blocks / 2 blocks per set = 8 sets (3 bit set field)

2 Each address has a:
3 bit set field
1 bit offset (word) field

#” Observation: Every 16 addresses, the values in these
fields repeat

Example 4 — Hit Ratio

2-way set associative cache with 16 two-word
blocks

72 First loop!
? Access to address 6 (0110, Set=3, Offset=0)
Miss! (Set 3 is invalid)
Words 6-7 are loaded into one block (tag = 0)
? Access to address 8 (1000, Set=4, Offset=0)
Miss! (Set 4 is invalid)
Words 8-9 are loaded into one block, tag=0

Example 4 — Hit Ratio

2-way set associative cache with 16 two-word
blocks

2 Same for addresses 10, 12, 14, 16, 18 and 20
(6 misses to sets 5,6, 7,0, 1 and 2)
? Access to address 22 (10110, Set=3, Offset=0)
Miss!
One block in the cache is invalid
The other block has tag O (for words 6-7)
Words 22-23 are loaded into the other block, tag =1

Example 4 — Hit Ratio

2-way set associative cache with 16 two-word
blocks

2 Same for addresses 24 to 36
(7 misses to sets 4,5, 6,7,0,1 and 2)

? Access to address 38 (100110, Set=3, Offset=0)
Miss!

Tag (2) doesn’t match either block
(words 6-7 and 22-23)

Words 38-39 (tag=2) replace words 6-7 (tag=0)
2 Same thing for address 40
Miss to set 4, words 40-41 replace words 8-9, tag=2

Example 4 — Hit Ratio

2-way set associative cache with 16 two-word
blocks

72 Same thing for address 40
Miss to set 4, words 40-41 replace words 8-9, tag=2
? Total for the first loop:
18 misses
0 hits
Hit ratio is 0%

Example 4 — Hit Ratio

2-way set associative cache with 16 two-word blocks

7
7

Second loop!
Access to address 6 is a miss to set 3
Words 6-7 replace 22-23, tag =0
Access to address 8 is a miss to set 4
Words 8-9 replace 24-25, tag=0
Access to address 10 is a hit to set 5
Finally!
Accesses to addresses 12 through 20 are hits (5 total)

Example 4 — Hit Ratio

2-way set associative cache with 16 two-word
blocks

2 Access to address 22 is a miss to set 3
Words 22-23 replace 38-39, tag=1

A Access to address 24 is a miss to set 4
Words 24-25 replace 40-41, tag =1

? Accesses to addresses 26 though 36 are hits (6 total)
#A Access to address 38 is a miss to set 3
Words 38-39 replace 6-7, tag = 2

Example 4 — Hit Ratio

2-way set associative cache with 16 two-word
blocks

#A Access to address 40 is a miss to set 4
Words 40-41 replace 8-81, tag =2
? Totals for the second loop:
6 misses
12 hits
Hit ratio is 66.66%
? Total for entire program:
24 misses, 12 hits
Hit ratio is = 33.33%

42

Cache Replacement Policies

Computer Systems and Networks Fall 2011

Replacement Policy

In a fully associative or set associative cache, a
replacement policy (“algorithm”) is run whenever we
need to evict a block from cache

What would the perfect replacement policy be?

2 Look into the future to see which blocks won’t be needed
for the longest period of time — evict those first!

7 This is often called the “oracle”, as in a prophet...

The perfect replacement policy is impossible to
implement (unless you have a time machine), but it
serves as a benchmark to compare actual
implementable algorithms against

Replacement Policy

Algorithm 1
? Least recently used (LRU)

? Keeps track of the last time that a block was
assessed in the cache

? Evict the block that has been unused for the longest
period of time

Drawbacks?

2 Complexity! RU has to maintain an access history for
each block, which ultimately slows down the cache

Replacement Policy

Algorithm 2
? First-in, first-out (FIFO)

2 The block that has been in the cache the longest is
evicted, regardless of when it was last used

Strengths and weaknesses?
? Strengths — Easier to implement

72 Weaknesses — The oldest block in the cache might
be the most popular!

If we evict it and it is popular, we’ll get it back in the
cache soon enough...

Replacement Policy

Algorithm 3
7 Random replacement

? Picks a block at random and replaces it with a new
block

Strengths and weaknesses?
? Strengths — Simple to implement. Never thrashes

72 Weaknesses — Might evict a block that will be
needed often or needed soon

Cache and Writing

Up to now, we have talked about reading from
main memory

7 And getting faster reads via the cache!

What about writing to main memory?
?” Can we get faster writes with a cache?

Yes! We can write data not to main memory, but to
the (faster) cache instead!

Cache and Writing

Writing to the cache poses a problem, though

? If the cache block has been modified from what is in
memory, we can’t just evict it when we need space
— it must be written back to memory first

72 New term — “Dirty” blocks
Blocks that have been updated while they were in the
cache but not written back to main memory yet

?2 Cache replacement policies must take into account
dirty blocks when deciding who (and how) to evict
from the cache

Cache and Writing

Write Through

Updates cache and main
memory simultaneously on
every write

Pro — Simple!

Con — slows down the access
time on updates

? Usually negligible because
the majority of accesses
tend to be reads, not writes

Write Back

Updates memory only when
the block is selected for
replacement

Pro — memory traffic is
minimized

Con —The value in memory
does not always agree with the
value in cache (causing
problems in multi-core / multi-
processor systems with many
caches)

50

Memory Access Time

Computer Systems and Networks Fall 2011

Effective Access Time

The performance of hierarchical memory is measured by its
effective access time (EAT)

EAT is a weighted average

2 Takes into account the hit ratio and relative access times of
successive levels of memory

EAT for a two-level memory:
? EAT=H x AccessC + (1-H) x AccessMM
H is the cache hit rate

AccessC and AccessMM are the access times for cache and main
memory, respectively

? This equation can be extended to any number of memory
levels

Effective Access Time

Example computer system

2 Main memory access time: 200ns
Cache access time: 10ns

Cache hit rate: 99%

Suppose access to cache and main memory occurs
concurrently (i.e. the accesses overlap)

EAT = 0.99(10ns) + 0.01(200ns)
=9.9ns + 2ns
=11.9ns

Effective Access Time

Example computer system

2 Main memory access time: 200ns
Cache access time: 10ns

Cache hit rate: 99%

Suppose access to cache and main memory occurs
sequentially (i.e. the accesses do not overlap)

EAT = 0.99(10ns) + 0.01(10ns + 200ns)
=9.9ns + 2.1ns
=12ns

54

Cache Variations

Computer Systems and Networks Fall 2011

Cache Variations

Many variations on cache designs

Unified cache — both instructions and data are
cached together

Harvard cache — separate caches for data and
instructions

? Provides better locality (i.e. performance) but
increases complexity

?2 Can get a similar benefit by simply providing a larger
unified cache

Cache Example — Intel Core i7 g8ox

7 High-end 6 core processor with a sophisticated
multi-level cache hierarchy

7 3.5GHz, 1.17 billion transistors (!!!)

e-Me[fnfory Controller

====Shé'red L3 Cach»e : Shared ta Cache*"“"

nEmmmnE SRR LT [O g 323 g3c3 nn oo nn oo
TS

ane faeus|

o
(=1
-QA e,
=
mi"
o
=
‘G
4}
=
v 1
424

]

eri&tlID andragPl

14 .
. - - el o - eed ouod peew oo - = e -y -y oo e e e et weed e weee |

Computer Systems and Networks Fall 2011

Cache Example — Intel Core i7 g8ox

Each processor core has its own a L1 and L2 cache
?” 32kB Level 1 (L1) data cache
8-way set associative, 64 byte block (“line”) size
?” 32kB Level 1 (L1) instruction cache
4-way set associative, 64-byte block size
? 256kB Level 2 (L2) cache (both instruction and data)
8-way set associative, 64-byte block size

The entire chip (all 6 cores) share a single 12MB
Level 3 (L3) cache

? 16-way set associative, 64-byte block size

Cache Example — Intel Core i7 g8ox

Access time? (Measured in 3.5GHz clock cycles)
? 4 cycles to access L1 cache

2 9-10 cycles to access L2 cache
? A48 cycles to access L3 cache

Smaller caches are faster to search
2 And can also fit closer to the processor core

Larger caches are slower to search

? Plus we have to place them further away

Cache Example — Intel Core i7 g8ox

The Intel cache hierarchy is inclusive

2 All data in a smaller cache also exists at the next
higher level

Other vendors (e.g. AMD) have exclusive caches

?” Only 1 copy of the data in any cache (i.e. if it’s in the
L1 cache, it cannot also be in the L2 or L3 cache)

Tradeoffs?

Circuit complexity
? Wasted cache memory space

