.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Instruction Set
Architecture

Schedule

Today
72 Closer look at instruction sets

Thursday
? Brief discussion of real ISAs
?2 Quiz 4 (over Chapter 5, i.e. HW #10 and HW #11)
Endianness?
Infix vs postfix notation?
Instructions / expanding opcodes?
Addressing modes?
Basic pipelines?
RISC vs CISC?

Problem 5.2 — Endianness

32-bit number 0x456789A1 starting at address 0x10

7 How is this saved in memory on a big endian
system? On a little endian system?

Address Big-Endian Little-Endian
0x10 45 Al
Ox11 67 89
Ox12 89 67
0x13 Al 45

One byte (8 bits) per location!

Related Problem

Addr Value If the data starting at address 10 is interpreted on a little-
endian system as an IEEE 754 single-precision value, what is

0x10 45 the decimal value?
Ox11 67
Read off number in correct order (0xA1896745) and convert
Ox12 89 to binary:
0x13 Al 2 10100001 1000100101100111 01000101
Interpret:

72 Sign: 1 (negative)
72 Exp: 01000011 (67 -127 = -60)
?2 Significand: 1.00010010110011101000101

Result: -1.00010010110011101000101 x 20

Problem 5.9(c) — Infix to Postfix

Convert from infix to postfix (RPN) notation:
5x(4+3)x2-6

5x(43+)x2-6
(543+x)x2-6
543+x2x -6

543+%x2x%x6-

6

Problem 5.11(c) — Postfix to Infix

Convert from postfix to infix notation:
357+ 2 1-x1++

2 Use a stack!

5.15 — Expanding Opcodes

Example computer:
?2 11 bit long instructions
7 4-bit long address fields

Can we fit the following instructions into the
specified instruction format?

A 5 2-address instructions
A 45 1-address instructions
2 32 0-address instructions

Let’s look at the raw bits and see...

Computer Systems and Networks Fall 2011

Instruction Types

Computer Systems and Networks Fall 2011

Instruction types

7 broad categories of processor instructions:
Data movement
Arithmetic
Boolean

Take 3 minutes and
brainstorm examples

Bit manipulation
P of each

/O
Control transfer

A X N N N NN

Special purpose

Instruction Types — Data Movement

Data movement

72 Moves data between memory, registers, or both

Examples

72 MARIE instructions: LOAD X and STORE X
PUSH and POP instructions

EXCHANGE: swap two values

May be different instructions for different sizes or
types of data (LOADINT and LOADFLT)

N N N

Instruction Types - Arithmetic

Arithmetic

? Operations which involve the ALU to perform a
calculation

Examples

A MARIE instructions: ADD X, SUBT X, ADDI X

2 MULTIPLY and DIVIDE

? INCREMENT and DECREMENT: add or subtract 1 from a
value

2 NEGATE: unary minus

72 Integer and floating point instructions

72 Some instruction sets even include scientific operations

(SINE, SQRT, etc)

Instruction Types — Boolean

Boolean

7 Logical operations on groups of bits

Examples
2 ANDX
Performs “bit-wise” operations
ACC 0 1 1 0 1 1 0 0
X 1 1 1 1 0 0 0 0
ACC 0 1 1 0 0 0 0 0

2 OR, NOT, XOR, COMPARE instructions

Instruction Types — Bit Manipulation

Bit manipulation
72 Non-Boolean operations on bits

Examples
2 ROTATE and SHIFT instructions

ROTATE moves all bits left or right, and bits which
are “shoved out” one side get “shoved in” the other

A Example: ROTATEL 3 / rotate left 3 bits

ACC 0 1 0 0 0 0 1 1

ACC 0 0 0 1 1 0 1 0

Instruction Types — Bit Manipulation

SHIFT moves all bits left or right, and bits which are
“shoved out” are discarded

For left shifts, O’s are shifted in

For right shifts, the bits shifted in depends on
whether the shift is logical or arithmetic

? Logical: Shiftin 0’s
? Arithmetic: Copy the leftmost bit (sign bit)

Thus, a negative number stays negative!

Instruction Types — /O

Input / Output
A Transfer data from system to/from external devices

Examples
2 MARIE instructions: INPUT and OUTPUT

A Some processors have no special /0 instruction and
instead use memory-mapped 1/0, treating I/O
devices like “special” memory

Instruction Types — Control Transfer

Control transfer

? Alter the normal sequence of program execution

Examples

72 MARIE’s JUMP, JUMPI, JNS, SKIPCOND, and HALT
Other processors have instructions like

BEQ/BNE (branch equal/not equal)

DJNZ (decrement and jump if not zero)

CIJNE (compare and jump if not equal)

Instruction Types — Special Purpose

Special purpose
? Just about everything not covered above

?2 These can provide access to special hardware
specific to the CPU

Intel’s SSE (Streaming SIMD Extensions) and AMD’s
3DNow! instructions for multimedia applications

String manipulation instructions

Instruction Types

One goal of instruction set design is orthogonality

The instructions should be

72 Unique - not duplicating the function of any other
instruction

? Consistent - (for example, the type of operands
should not depend on the type of instruction)

Hard to implement perfectly in practice!

7 Different engineers make difference decisions on
best ISA practices

5o-Word Problem from HW #10

Describe the key design traits that classify a
computer processor as either "CISC" or "RISC"

design and state which part of the CPU
performance equation each design attempts to
optimize

21

Addressing Modes

Computer Systems and Networks Fall 2011

Addressing Modes

Addressing modes specify where an operand is located

Choices?
2 Constant?
72 Register?

2 Memory location?

The actual location of an operand is called its
effective address

Certain addressing modes allow us to determine the
address of an operand dynamically

Addressing Modes

Immediate addressing
? The data is part of the instruction
2 Example: ADD 1 (where 1 is data, not an address)

Direct addressing

2 The address of the data is given in the instruction
? Example: ADD ONE (where “ONE” is a label)

Register addressing

A The number / name of the register that holds the data is
given in the instruction

? Example: ADDR1

Addressing Modes

Indirect addressing

? The address of the address of the data is given in
the instruction

A Example: ADDI POINTER

Register indirect addressing

7 Aregister stores the address of the address of the
data

?” Example: ADDI R1

Addressing Modes

Indexed addressing

7 Instruction names two things: index register (might be implicit) and an
address

Index Register holds an offset number (the “index number”)
Address is a base address

. Effective address of data = base + offset

. Example: ADD 4(R1)

Based addressing

P Same idea, but fields are reversed!

? Instruction names two things: base register and a displacement address
Base register holds the base address
Displacement address is the offset (“index”)

. Effective address of data = base + offset

Addressing Modes

Stack addressing

? Operand is assumed to be on top of the stack

(Even more) variations to these addressing modes!
? Indirect indexed

Self-relative

Auto increment / auto decrement

Too much detail for ECPE 170...

N N N

Let’s look at an example of the principal addressing modes

Addressing Modes Example

For the instruction shown, what value is loaded into the
accumulator for each addressing mode?

72 Assume R1is implied for Indexed mode...

Memory

LOAD 800
800 900
R1 800
900 1000
Value Loaded
1000 500 Mode into AC
Immediate

1100 600 Direct

Indirect
1600 700 Indexed

Addressing Modes Example

Memor
= Y — LOAD 800
R1 | 800

900 1000

Value Loaded
1000 500 Mode into AC
Immediate /800 '\
1100 600 Direct [900 |
Indirect \ 1000 /
1600 700 Indexed \ 700 /

Addressing Modes Exercise

Exercise: For the instruction shown, what value is
loaded into the accumulator for each addressing

mode?
Memory
500 o LOAD 900
R1 | 200
900 1000
Value Loaded
1000 500 Mode into AC
Immediate

1100 600 Direct

Indirect
1600 700 Indexed

30

Instruction Pipelining

Computer Systems and Networks Fall 2011

Instruction Pipelining

Some CPUs divide the fetch-decode-execute cycle
into smaller steps

7 These steps can often to be executed in parallel to
increase processor throughput (i.e. more
instructions per cycle!)

Called instruction pipelining
? Provides for instruction level parallelism (ILP)
? Executing more than one instruction at a time

Instruction Pipelining Example

Suppose a fetch-decode-execute cycle were broken
into the following smaller steps:

1. Fetch instruction 4. Fetch operands
2. Decode opcode 5. Execute instruction
3. Calculate effective 6. Store result

address of operands

We can implement this cycle with a six-stage
pipeline

Instruction Pipelining Example

For every clock cycle, one small step is carried out,
and the stages are overlapped

. . Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7
S1. Fetch instruction yce ' y y y y y

S2. Decode opcode S1 | S2 | S3 | S4 | S5 | S6
S3. Calculate effective

address of operands Instruction 1
S4. Fetch operands s1 | s2 | s3 | sal s5 | s6
S5. Execute

S6. Store result Instruction 2

Speedup of Instruction Pipelining

What is the theoretical speedup offered by a pipeline?

Let t, be the time per stage. Each instruction represents
a task, T, in the pipeline.

The first task (instruction) requires k x t, time to
complete in a k-stage pipeline. The remaining (n-1)
tasks emerge from the pipeline one per cycle. So the
total time to complete the remaining tasks is (n - 1)t,.

Thus, to complete n tasks using a k-stage pipeline
requires:
2 (kxt)+(n-1t, =(k+n-1)t

Speedup of Instruction Pipelining

If we take the time required to complete n tasks
without a pipeline (n*t,) and divide it by the time it
takes to complete n tasks using a pipeline, we find:

nt,
Speedup S =

(k+n—1)tp

If we take the limit as n approaches infinity,
(k + n - 1) approaches n, which results in a
theoretical speedup of:

ktp

I
N

t =k*t Speedup § =

n p
tP

Speedup of Instruction Pipelining

Example:
7 Non-pipelined CPU has a clock period t, = 100ps
2 CPU is redesigned to be pipelined

k=5 stages

clock period t, = 20ps

The theoretical speed-up is 100ps/20ps = 5.

If we execute n=1,000 sequential tasks (instructions),
the actual speed-up is

S nt, 1000x100ps 100,000 ps

_ — = =4 .98
(k+n-Dt, (5+1000-1)x20ps 20,080ps

Speedup of Instruction Pipelining

Exercise

?2 Suppose we have a non-pipelined CPU with a clock
period t, of 150ps

? We redesign the CPU to be a 6 stage pipeline with a
clock period t, of 30ps.

N

What is theoretical speed-up?

A

If we execute n=500 sequential tasks (instructions),
what is the actual speed-up?

Speedup of Instruction Pipelining

The theoretical speed-up is 150ps/30ps = 5.

If we execute n=500 sequential tasks (instructions),
the actual speed-up is

500x150ps 75,000 ps

= =4.950495...
(6+500-1»30ps 15,150ps

Instruction-Level Pipelining

Real life is not as perfect as these examples would indicate!

We made a huge assumption here: t, =k * t;

If this is true, then the pipeline is perfectly balanced

2 The hardware in every stage takes the exact same amount of time
to operate

Most pipelines are not balanced
72 Some stage takes longer to operate than others

Example: getting data from memory is slower than decoding the
opcode

2 When the pipeline is not balanced, t, is determined by the slowest
stage

2 Ift, < k*t,, the speedup of a k-stage pipeline cannot be k

Instruction-Level Pipelining

7 Real life is even worse — there are more problems
than simply having some stages be slower than
others!

7 The architecture may not support fetching
instructions and data in parallel

72 Need separate memories
A More hardware = more SS

Computer Systems and Networks Fall 2011

Instruction-Level Pipelining

We might not always be able to keep the pipeline full of
instructions

? Hazards cause pipeline conflicts and stalls

Example hazards

? Data hazards (dependencies)

Structural hazards (resource conflicts)
Control hazards (conditional branching)

Your 50-word problem for HW #12 asks you to explain
these hazards

2 70-word limit for this one!

Instruction-Level Pipelining

Hazards can cause pipeline to stall or flush
Stall — pipeline is delayed for a cycle
? Flush — all instructions in pipeline are deleted

Clever hardware or clever assembly programmers
(or optimizing compilers) can reduce the effects of

these hazards
?2 But not fully eliminate them...

