.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

MARIE Instruction
Decoding

Schedule

Today

? MARIE instruction decoding hardware
7 Plus Quiz 3!

Thursday — Begin Chapter 5

2 Closer look at instruction sets

Homework 4.33 Review

Addr, Hex / Top of list pointer
Node2, Hex 0032 / Node's data 1s the character "2."
Hex / Address of Node3.
Node4d4, Hex 0034 / Character "4."
Hex
Nodel, Hex 0031 / Character "1"
Hex
Node3, Hex 0033 / Character "3"
Hex
Node5, Hex 0035 / Character "5"
Hex 0000 / Indicates terminal node.
1 > 2 =3 \
S~

Instruction Decoding

Computer Systems and Networks Fall 2011

Processor Control Unit

Role of processor control unit
72 Keeps operations synchronized

72 Make sure that bits flow to the correct components
at the correct time

How can we build this control unit?
2 Hardwired control, or
72 Microprogrammed control

The result is the same — control signals!

Processor Control Unit

Remember the register transfer language
description of each MARIE instruction?

2 Table 4.7
? This is what the control unit manages

Each microoperation consists of a distinctive signal
pattern that is interpreted by the control unit and
results in the execution of an instruction

7 RTLfor the Add instruction: yar < x

MBR < M[MAR]
AC <« AC + MBR

Processor Control Unit

Bus
Address

MARIE registers and main 0
. ——» Main Memory ——»
memory have a unique
1
datapath address MAR >
This address is issued as 5
. - (wer) .
control signals by the control x
unit 4 e \aw/
»
How many signal lines does o g
. 6
MARIE’s control unit need ———»{OutReg) >
to manage registers/main (R) .

memory?

16-bit bus

Processor Control Unit

Bus
Address

Two sets of three signals each 0
——» Main Memory ——»
{P2, P1, PO} ! VAR .
? Controls reading from memory 24,@ .
or a register 5
' (wer) >
{P5, P4, P3} 4 1\ A / |
72 Controls writing to memory or a 5
register i) i

What does this look like in detail? 7
7 MBR shown next

Y

16-bit bus

Memory Buffer Register (MBR) Closeup

D Qf
|, dantrol D Flip-Flops for
writing) by$ fFor - dantrpl reading)
wWriting LAY () --===--- B Fobr] 8
o weadlIg
A \\ IMIBR Storage
/ﬂ\ /} A\ (D Flip-Flops)
\/ éiv/ \
Ps Py Py Control Unit P2 P1 Fo —

Write MBR=P5’ P4 P3 Read MBR=P2’ PO P1

Processor Control Unit

Control unit must manage

more than just registers/ AU Cona
main memory Signals
7 What about the ALU Ao A ALU Response
modes? 0 0 Do Nothing
1 0 AC < AC + MBR
ALU has only four operations 0 1 AC < AC - MBR
1 1 AC « 0 (Clear)
A Add, subtract, clear, and

“do nothing”

ALU controls: A, — A,

Processor Control Unit

How does the control unit The entire set of MARIE’s
perform operations in control signals consists of:
sequence? 2 Register controls

. . P, through P
Longest instruction is JNS o tNrOUgn s

(look at RTL in Table 4.7) 7 ALU controls
A 7 steps A, through A,
7 Need a 3-bit counter wired 2 Timing
to a 3-8 decoder T, through T,
Counter reset for shorter # Counter reset C,
instructions

Output of decoder is “timing”
signals: T,— T,

ADD Instruction Control

ADD instruction RTL

A MAR < X

A MBR < M[MAR]
A AC < AC + MBR

After the add instruction is fetched, the address (X) is in the
rightmost 12 bits of the IR

72 IR datapath address is 7
? Raisesignals P2, P1, and PO to read from IR

X is copied to the MAR
7 MAR datapath address is 1
72 Raise signal P3 to write to MAR

ADD Instruction Control

Complete signal sequence for ADD instruction

7

7
7

.

P3 P2 P1 PO TO: MAR <= X

P4 P3T1: MBR <— M[MAR]
AOP5P1POT2: AC<— AC+ MBR
CrT3: [Reset counter]

These signals are ANDed with combinational logic
to bring about the desired machine behavior

ADD Instruction Control

Add instruction timing

diagram

Notice the concurrent signal
states during each machine

cycle: CO through C3.

P3 P2 P1 PO TO: MAR <« X

P4 P3 Tl: MBR < M[MAR]

A0 P5 P1 PO T2: AC «<— AC + MBR
Cr T3: [Reset counter]

Processor Control Unit

This signal pattern needs to be produced regardless of
whether the processor uses hardwired or
microprogrammed control

Hardwired control unit
?2 Control unit is pure digital logic

Microprogrammed control unit
A Atiny program (called “microcode”) saved in ROM
Even more rudimentary than assembly language!

2 Microinstructions are fetched, decoded, and executed in
the same manner as regular instructions

?2 Control unit works like a processor-in-miniature

16
I S,

Hardwired Control Unit

Computer Systems and Networks Fall 2011

Hardwired vs Microprogrammed

Hardwired

Simple

Fixed — requires redesigning
circuit to change operation

Microprogrammed

“Slower” (historically - due to
extra level of instruction
interpretation)

Flexible — Changing firmware
alters the way processor
executes instruction

72 If firmware is in flash, you can

reprogram processor to fix
bugs!

Scalable — Supports complicated

All modern processors use some
form of microprogramming for
control

instructions with minimal
hardware overhead

18

Quiz 3— MARIE Stack

Computer Systems and Networks Fall 2011

Simple Stack

Operations:
72 PUSH

2 PEEK

2 POP

Two key stack variables
2 StackBasePtr — Pointer to base of stack

2 StackCtr — Count of current number of elements in
stack

Simple Stack

Address Contents

Start of program
72 Nothing on the stack!

2 Base pointer points to base 001 [[Program]]
of stack

A CounterisO

000 [[Program]]

[[Program]]

StackBasePtr 100 102

/
StackCtr 101 / 0
4
102
103

104

Simple Stack

Address Contents

Push [55] operation
000 [[Program]]

Results after push 001 [[Program]]

2 Counterisnow 1

2 Stack element O created [[Program]]
StackBasePtr 100 102
Where does the element go? /
72 Mem[102+0] StackCtr 101 / 1
¥
/ Stack|[0] 102 55

Value of counter before

) i 103

incrementing!

104

Simple Stack

Address Contents

Push [66] operation
000 [[Program]]

Results after push 001 [[Program]]

2 Counterisnow 2

Stack element 1 created [[Program]]

StackBasePtr 100 /102

StackCtr 101 / 2

¥
Stack|[0] 102 55

Stack[1] 103 66

104

Simple Stack

Peek operation

Results after peek
?” Counteris unchanged

Stackis unchanged

Element 66 is available StackBasePtr
StackCtr

Where did we find 667

72 Mem[102+(2-1)] Stack[0]
Stack[1]

Address Contents
000 [[Program]]
001 [[Program]]

[[Program]]
100 102
/
101 / 2
¥
102 55
103 66

104

Simple Stack

Address Contents
Pop operation

000 [[Program]]

Results after pop 001 [[Program]]

2 Counterisnow 1

? Stack is unchanged [[Program]]

StackBasePtr 100 102

Don’t need to modify the /
stack in memory StackCtr 101 / 1
? 66 can persist as garbage
P 5 5 Stack|[0] 102 g 55
value beyond current top
of stack 103 66

104

