

Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific

Exam 1 Review

Exam 1 Basics

Topics

- **7** Chapter 2
 - Data representations
- **7** Chapter 3
 - Digital logic
- Part of Chapter 4
 - Basic organization and memory systems
 - Nothing on MARIE

Rules

- No calculators
- Closed book / notes / friend / Internet / etc...

Review Materials

- Things to study
 - Homework assignments
 - **₹** Solutions are posted in Sakai
 - Quiz 1 and 2
 - Solutions are posted in Sakai
 - Lecture notes
- Question format will be similar to quizzes
 - Mix of problems and short answer questions
 - Problems typically come from textbook...
 - Short answer questions typically come from lectures...

Chapter 2 – Data Representation

Convert 26.78125₁₀ to binary (max of 6 digits after binary point)

Ans: 11010.11001

⊘ Convert 110010011101₂ to hexadecimal

7 Ans: C9D₁₆

- Express 23₁₀ and -9₁₀ in 8-bit binary using signed-magnitude, 1's complement, and 2's complement format
- **Ans for 23:**
 - → Signed-magnitude: 00010111₂
 - One's comp: 00010111₂
 - **7** Two's comp: 00010111₂
- Ans for -9
 - → Signed-magnitude: 10001001₂
 - One's comp: 11110110₂
 - Two's comp: 11110111₂

Convert 26.78125₁₀ to IEEE 754 single-precision floating-point format (recall that 26.78125₁₀ = 11010.11001)

- Ans:
 - → Sign bit: 0 (i.e. positive)
 - Exponent: 10000011 (i.e. 127+4=131)
 - Significand: 1010110010....0 (for 23 bits)

Data Representation

- What is ASCII? EBCDIC? Unicode?
 - What do they do the same? Different?
 - Why are there three standards?

Chapter 3 – Digital Logic

Boolean Expressions

- In the Boolean expression F(x,y)=x+y, does this mean "add the value to x to the value of y?"
 - No: the + operator is OR!
- Order of operations: what do I do first? Second?

$$F(x, y, z) = \overline{xyz}$$

Equivalent way to write it:

$$F(x, y, z) = (xyz)'$$

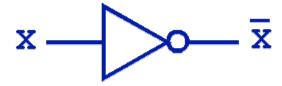
Boolean Expression

Simplify the following Boolean expression:

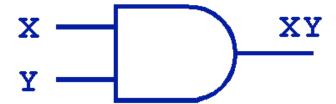
$$F(x, y, z) = xy + \overline{x}z + yz$$

$$F(x, y, z) = xy + \overline{x}z + (x + \overline{x})yz$$

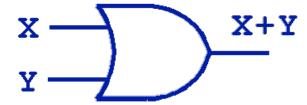
$$F(x, y, z) = xy + \overline{x}z + xyz + \overline{x}yz$$


$$F(x, y, z) = xy + xyz + \overline{x}z + \overline{x}yz$$

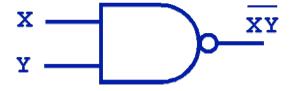
$$F(x, y, z) = xy + xyz + \overline{x}z + \overline{x}yz$$

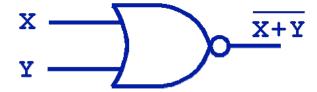

$$F(x, y, z) = xy(1 + z) + \overline{x}z(1 + y)$$

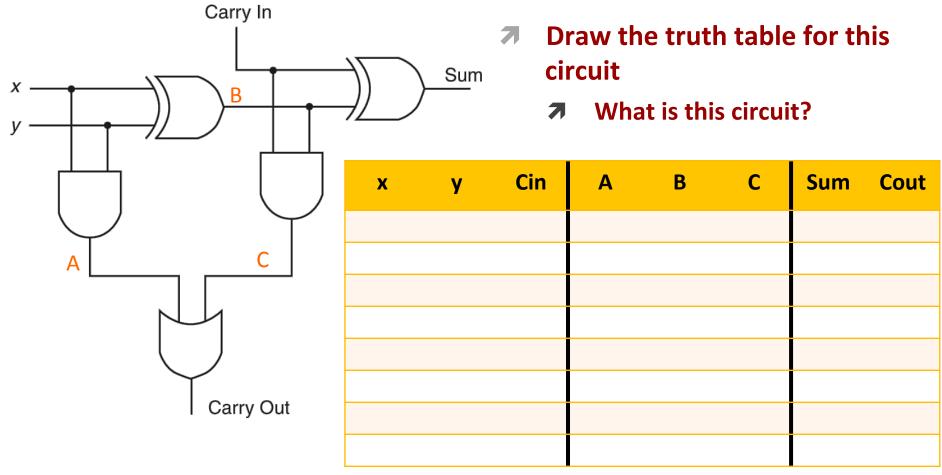
$$F(x, y, z) = xy + \overline{x}z$$


- What is this gate?
- What is its truth table?

- What is this gate?
- What is its truth table?


- What is this gate?
- What is its truth table?


- What is this gate?
- What is its truth table?



- What is this gate?
- What is its truth table?

- What is this gate?
- What is its truth table?

Digital Logic – Sequential

- Give the truth table for an SR, JK, and D flip flop
 - What does SR mean?
 - What does JK mean?
 - What does D mean?

F	Z	у	x	w
1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
1	1	1	0	0
0	0	0	1	0
1	1	0	1	0
0	0	1	1	0
1	1	1	1	0
0	0	0	0	1
0	1	0	0	1
1	0	1	0	1
1	1	1	0	1
0	0	0	1	1
1	1	0	1	1
0	0	1	1	1
1	1	1	1	1

Karnaugh Maps

- Construct a K-map from the truth table
- Simplify the resulting function

$$F(w,x,y,z) = yz+xz+w'x'y'z'+wx'y$$

Chapter 4 – Computer Organization

Measures of Capacity and Speed

- What do these prefixes mean in powers of 2 and 10? (Kilo, Mega, Giga, Tera, Peta)
 - 7 Kilo (K) = 10^3 and 2^{10}
 - \blacksquare Mega (M) = 10^6 and 2^{20}
 - \blacksquare Giga (G) = 10^9 and 2^{30}
 - 7 Tera (T) = 10^{12} and 2^{40}
 - **7** Peta (P) = 10^{15} and 2^{50}
- → Which base do I use powers of 2 or \10?
 - 4 GB main memory
 - Powers of 2
 - **58.9 PFLOP** (58 peta floating-point operations per second)
 - Sum of all the world's top supercomputers in June 2011
 - Powers 10

Computer Organization

- What is a bus?
- What's the difference between a *point-to-point* and *multi-point* bus?
- **₹** What does the *clock* do?
- Is increasing the clock rate the only way to improve application performance?

CPU Time=
$$\frac{\text{seconds}}{\text{program}} = \frac{\text{instructions}}{\text{program}} * \frac{\text{avg.cycles}}{\text{instruction}} * \frac{\text{seconds}}{\text{cycle}}$$

Reduce any of these, or all three!

Computer Organization

- What does addressability mean in the context of a memory system?
- Which type of memory system would require more address lines: a word-addressable memory, or a byte-addressable memory?
- What is the difference between *high-order* and *low-order* interleaving? (What is interleaving?)

Memory Organization

- Exercise: Build a 1M x 16 word-addressable main memory using 128K x 4 RAM chips.
 - 1. How many address bits are needed per RAM chip?
 - 2. How many RAM chips are there per word?
 - 3. How many RAM chips are necessary?
 - 4. How many address bits are needed for all memory?
 - 5. How many address bits would be needed if it were byte addressable?
 - 6. How many banks will there be?
 - 7. What bank would contain address 47129₁₆ with (a) high-order interleaving or (b) low-order interleaving?

Solution to Exercise

- 1. Each RAM chip has 128K locations: $2^7 * 2^{10} = 17$ bits
- 2. Each RAM chip location stores 4 bits, but we need 16:
 - 1. 4 chips needed per word
- 3. Each RAM chip has 128K locations, but we need 1M locations:
 - 1. 1M/128K = 8 (times 4 chips per word) = **32 RAM chips** (8 rows, 4 columns)
- 4. Memory is $1M: 2^20 = 20$ bits for all of memory
- 5. Byte addressable adds 1 more bit here (to select either the lower 8 or upper 8 of the 16 bit long word): **21 bits**
- 6. **8 banks** of memory, where each bank has 4 chips
- 7. Address is 20 bits long, bank is upper 3 bits (2^3=8): 47129(16) = 0100 0111 0001 0010 1001 (2) With high-order interleaving, bank is #2 With low-order interleaving, bank is #1