

Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific

Digital Logic

Homework Review – 2.33(d)

- **Convert 26.625 to IEEE 754 single precision floating point:**
- Format requirements for single precision (32 bit total length):
 - 1 sign bit
 - 8 bit exponent (which uses a bias of 127)
 - **2**3 bit significant (which has an **implied 1. that is not stored in the field**)
- Convert 26.625 to binary: 11010.101 x 2⁰
 - Normalize it in the IEEE way: 1.1010101 x 2⁴
 - **Bias exponent:** 4 + 127 = 131 (10000011 in binary)
- Result
 - **♂** Sign bit: 0
 - **Exponent (8 bits): 10000011**

Implementing Boolean Functions

How do we physically implement Boolean functions?

$$F(X,Y,Z) = (X+Y)(X+\overline{Y})(X\overline{Z})$$

- Using digital computer circuits called gates
- **ℳ** What is a gate?
 - Electronic device that produces a result based on two or more input values
 - Built out of 1-6 transistors (but we'll treat a gate as a single fundamental unit in this class)
- Integrated circuits contain gates organized to accomplish a specific task

Gates: AND, OR, NOT

AND Gate

X AND Y

X	Y	XY
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

X OR Y

X	Y	X+Y
0	0	0
0	1	1
1	0	1
1	1	1

NOT Gate

NOT X

Х	\overline{X}
0	1
1	0

Look at the NOT gate: The O symbol represents "NOT". You'll see it on other gates

Gates: XOR

Exclusive OR (XOR)

X XOR Y

x	Y	X \oplus Y
0	0	0
0	1	1
1	0	1
1	1	0

- The output of the XOR operation is true only when the values of the inputs are different
- Note the special symbol ⊕ for the XOR operation.

Fall 2011

Gates: NAND, NOR

NAND (AND w/NOT)

AND with NOT afterwards X NAND Y

X	Y	X NAND Y
0	0	1
0	1	1
1	0	1
1	1	0

NOR (OR w/NOT)

OR with NOT afterwards

X NOR Y

X	Y	X NOR Y
0	0	1
0	1	0
1	0	0
1	1	0

Universal Gates

- Why bother with NAND and NOR?
 - Don't they make our life more difficult compared to the obvious AND, OR, NOT?
- NAND and NOR are universal gates
 - Easy to manufacture
 - Any Boolean function can be constructed out of only NAND or only NOR gates

Example using only NAND gates:

x AND y

X OR Y

Multiple Input / Multiple Output

- We can physically build many variations of these basic gates
 - Gates with many inputs? Yes!
 - Gates with many outputs? Yes!
 - Second output might be for the complement of the operation

Combining Gates

Boolean functions can be implemented by combining many gates together

$$F(X,Y,Z) = X + \overline{Y}Z$$

$$X = \overline{Y}Z$$

- Why did we simplify our Boolean expressions previously?
 - So we can build simpler circuits with fewer gates!

Combinational Circuits

Combinational Circuits

- Two general classifications of circuits
 - Combinational logic circuits
 - Sequential logic circuits
- Combinational logic circuits
 - Produce a specified output (almost) at the instant when input values are applied
 - Also known as: "Combinatorial circuits"
- Sequential logic circuits
 - **↗** Incorporate delay/"memory" elements
 - Will discuss later

Combinational Circuit

Construct the truth table for this circuit

Combinational Circuit

X	у	Z	Α	В	С	D	F(x,y,z)
0	0	0	1	0	0	0	0
0	0	1	1	0	1	0	1
0	1	0	1	1	0	1	1
0	1	1	1	1	1	1	0
1	0	0	0	0	0	1	1
1	0	1	0	0	0	1	1
1	1	0	0	0	0	1	1
1	1	1	0	0	0	1	1

Combinational Circuit – Half Adder

- Half Adder
 - **7** Finds the sum of two bits
- How can I implement the truth table?

 - 7 Carry = x AND y

Inputs Outputs

x	Y	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Combinational Circuit – Full Adder

A **full adder** is a half adder plus the ability to process a carry-input bit

•	Inputs		Outp	ou cs
X	Y	Carry In	Sum	Carry Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1
lew ir	nput:			

Combinational Circuit – Full Adder

What do we need to add to the half adder (shown below) to make it a full adder?

Inputs	Outputs
--------	---------

x	Y	Carry In	Sum	Carry Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Combinational Circuit – Full Adder

A Full Adder is really just two Half Adders in series

Inputs			Outp	outs
x	Carry X Y In		Sum	Carry Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	1	0	0	1
1	1	1	1	1

Ripple Carry Adder

- Full adders can be connected in series to form a ripple carry adder
 - The carry bit "ripples" from one adder to the next

- What is the performance of this approach?
 - Slow due to long propagation paths
 - Modern systems use more efficient adders

Combinational Circuit – Decoder

■ Selects one (of many) outputs from a single input

Combinational Circuit – Decoder

Implementation of a 2 input to 4 output decoder

If x = 0 and y = 1, which output line is enabled?

Memory

- Common decoder application: Memory address decoders
 - n inputs can select any of 2ⁿ locations.
- Example: Suppose we build a memory that stores2048 bytes using several 64x4 RAM chips
 - How do we determine which RAM chip to use when reading/writing a particular address?

Memory

Build this:

Full Memory 2048 total bytes

(or $2048 = 2^{11}$ addresses, 1 byte per address)

Data wires (8)

Address wires (11)

With many of these:

64x4 RAM Chip 64 (or 2⁶) locations 4 bits per location

Data wires (4)

Address wires (6)

Memory

- To get 2048 total addresses, we need 2048/64 = **32 banks** of RAM chips
- To make each address contains one byte (8 bits) we must access 8/4 = 2 chips in parallel
 - Therefore, a total of 32*2 = 64 RAM chips
 - Picture an array of RAM chips
 - **32** rows
 - 2 columns
- To determine which of 32 possible banks to read data from, a 5-to-32 decoder is needed ($2^5 = 32$)

Combinational Circuit – Multiplexer

- A multiplexer selects a single output from several inputs
- Which input is chosen?
 - Selected by the value on the multiplexer's control lines
- To select from n inputs, log₂n control lines are needed.

Combinational Circuit – Multiplexer

▼ Implementation of a 4-to-1 multiplexer

Combinational Circuit – Shifter

- This **shifter** moves the bits of a 4-bit input one position to the left or right
- If S = 0, in which direction do the input bits shift?
 - **7** Left!

Combinational Circuits

- **Does the output of a combinational circuit change instantly when the input changes?**
 - No − takes a tiny (but measurable) length of time
 - Electrical signals in a wire have a finite speed
 - A transistor takes a finite time to change state

- Combinational logic circuits
 - Immediately apply Boolean function to set of inputs
 - This does not work for all problems!
- What if we want a circuit that changes its value based on (a) its **inputs** and (b) its **current state**?
 - These circuits have to "remember" their current state
 - This is a sequential logic circuit

- Sequential logic circuits require a means by which events can be sequenced
 - The clock!
- What is a clock?
 - Not a "wall clock"
 - Circuit that sends electrical pulses through a system

- State changes occur in sequential circuits only when the clock "ticks"
- Circuits can change state on the:
 - Rising edge, or
 - Falling edge, or
 - When the clock pulse reaches its highest voltage

- **Edge-triggered** circuits
 - Change state on the rising edge or falling edge of the clock pulse
- Level-triggered circuits
 - Change state when the clock voltage reaches its highest or lowest level

- How can we make a circuit that uses its current output in deciding its next output?
 - Feedback loop an output back to the input
- Example:
 - If Q is 0 it will always be 0
 - If Q is 1, it will always be 1

Sequential Circuits – SR Flip-flop

- - → The "SR" stands for set/reset
 - Basic storage element

Internal design (clock not shown):

Block diagram (with clock):

Sequential Circuits – SR Flip-flop

- What does the truth table of an SR flip-flop look like?
 - Q(t) is the value of the output Q at time t
 - → Q(t+1) is the value of Q after the next clock pulse.

s	R	Q(t+1)
0	0	Q(t) (no change)
0	1	0 (reset to 0)
1	0	1 (set to 1)
1	1	undefined

Sequential Circuits – SR Flip-flop

- The SR flip-flop actually has three inputs: S, R, and its current output, Q
- More complete truth table
 - 7 Two undefined values!
 - SR flip-flop unstable when "set" and "reset" are both active

	P	resent State	Next State
S	R	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	undefined
1	1	1	undefined

Sequential Circuits — JK Flip-flop

- JK flip-flop removes this risk
 - Ensures that both "set" and "reset" inputs to an SR flip-flop will never both be 1
 - "JK" named after Jack Kilby
 - 2000 Nobel Prize winner for invention of the integrated circuit while at Texas Instruments

Sequential Circuits — JK Flip-flop

- JK flip-flop is really just a wrapper around a basic SR flip-flop
- JK is stable for all inputs
 - **对** J=K=1: Toggle output

J K	ζ	Q(t+1)
0 0 0 1 1 0 1 1) L) L	Q(t) (no change) 0 (reset to 0) 1 (set to 1) Q(t)

Sequential Circuits – D Flip-flop

- D Flip-Flop
 - Another modification of the SR flip-flop
 - **▶** D=Data (but I remember D=Delay...)
- Output of the flip-flop remains the same during subsequent clock pulses
 - Output changes only when D changes

D	Q(t+1)
0	0
1	1

Sequential Circuits – D Flip-flop

- D flip-flop is the fundamental circuit of computer memory
 - Usually illustrated using the block diagram shown below

D	Q(t+1)
0	0
1	1