.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Digital Logic

Homework Review — 2.33(d)

Convert 26.625 to IEEE 754 single precision floating point:

Format requirements for single precision (32 bit total length):

7 1 sign bit

2 8 bit exponent (which uses a bias of 127)

? 23 bit significant (which has an implied 1. that is not stored in the field)

Convert 26.625 to binary: 11010.101 x 2°
? Normalize it in the IEEE way: 1.1010101 x 24
. Bias exponent: 4 + 127 = 131 (10000011 in binary)

Result
7 Sign bit: 0
? Exponent (8 bits): 10000011

? Mantissa (23 bits): 10101010000000000000000
(padded out to 23 bits, leading 1 not shown!)

? Thus, 0 | 10000011 | 10101010000000000000000

Implementing Boolean Functions

How do we physically implement Boolean functions?

F(X,Y,7)=(X+Y) (X+Y) (XZ)
2 Using digital computer circuits called gates

What is a gate?

? Electronic device that produces a result based on two or
more input values

7 Built out of 1-6 transistors (but we’ll treat a gate as a
single fundamental unit in this class)

Integrated circuits contain gates organized to
accomplish a specific task

Gates: AND, OR, NOT

AND Gate OR Gate NOT Gate
X X

Y = Y

X AND Y X OR Y NOT X

X Y XY X Y @ X+Y -

O 0 0 0 0 O

o 1 0 o 1 1 o 1

1 0 0 1 0 1 1 0

1 1 | 1 1 1 1

Look at the NOT gate: The O symbol represents “NOT”. You’ll see it on other gates

Gates: XOR

Exclusive OR (XOR) The output of the XOR

operation is true only when

X XOR Y
the values of the inputs are
* T | *e% different
0o o0 0
0o 1 1 h - bol
1 0 1 Note the special symbol @
1 1 0 for the XOR operation.

Gates: NAND, NOR

NAND (AND W/NOT) NOR (OR W/NOT)
AND with NOT afterwards OR with NOT afterwards
X NAND Y X NOR Y
X Y X NAND Y X Y X NOR Y
0 0 1 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 0

DeMorgan’s Law

X — o X+Y
€<—— Normal form —> v
Y —
X X+Y = XY x —GC XY = X+¥
v <€<—— enables these —> -
e alternate forms ¥ —0

Universal Gates

. Example using only NAND gates:
Why bother with
NAND and NOR? NOT x

X X
72 Don’t they make our life

more difficult compared to
the obvious AND, OR, NOT? X AND Y

X) XY —
NAND and NOR are universal v XY = XY

gates
2 Easy to manufacture XxORY

X

2 Any Boolean function can be X }
constructed out of only

NAND or only NOR gates v 3 _

Y

Multiple Input / Multiple Output

We can physically build many variations of these
basic gates

72 Gates with many inputs? Yes!
72 Gates with many outputs? Yes!

Second output might be for the complement of the
operation

Y Y —— _
z 7 — Y Q

Combining Gates

Boolean functions can be implemented by combining
many gates together

F(X,Y,2) = X+YZ

: Di_D X+YZ

Z

Why did we simplify our Boolean expressions
previously?
?2 So we can build simpler circuits with fewer gates!

10

Combinational Circuits

Computer Systems and Networks Fall 2011

Combinational Circuits

Two general classifications of circuits
?” Combinational logic circuits
72 Sequential logic circuits

Combinational logic circuits

? Produce a specified output (almost) at the instant when
input values are applied

2 Also known as: “Combinatorial circuits”

Sequential logic circuits

? Incorporate delay/“memory” elements
72 Will discuss later

12

Combinational Circuit

Doy o

:))HF

SAY

Construct the truth table for this circuit

Combinational Circuit

Y
S
g
]

of
?

= = = =R O O O O

R B O O B B O O
R O B O B O = O
O O O O Kk R, R, .
O O O O »r B O O
O O O O »r O +»r O
T = O = = = I

Computer Systems and Networks Fall 2011

Combinational Circuit — Half Adder

Inputs Outputs

Half Adder
X Y S C
Z Finds the sum of two bits um arry
0 0 0 0
How can | implement the 0 1 1 0
truth table? 1 O 1 0
1 1 0 1

A Sum=x®@y (XOR)
2 Carry=xANDYy

X 4 A\ Sum
;)

Carry

Combinational Circuit — Full Adder

A full adder is a half adder Inputs Outputs

plus the abI|I'Fy to process a Carry Carry

carry-input bit X Y In Sum Out
0 0 0 0 0
0 O 1 1 0
0O 1 0 1 0
0O 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

New input:

Combinational Circuit — Full Adder

What do we need to add to Inputs Outputs
the half adder (shown

) Carr Carr
below) to make it a full X Y In Y Sum Outy
adder?

0 0 0 0 0
] \ 0 0 1 1 0
* Dﬂn 0 1 0 1 0
Y 7 0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
Half
Adder tol ' : "

Carry

Combinational Circuit — Full Adder

A Full Adder is really just two Half Adders in series

Carry In Inputs Outputs

Carry Carry

A sSum X X In Sum Out
DD

v) v/ 0O O 0 0 0

Y 0O O 1 1 0

0 1 0 1 0

L 0 1 1 0 1

1 O 0 1 0

1 O 1 0 1

1 1 0 0 1

1 1 1 1 1

Carry Out

Ripple Carry Adder

Full adders can be connected in series to form a
ripple carry adder

?A The carry bit “ripples” from one adder to the next

Y5 %15 ¥ X ¥, %
|| S N R I

C
15 2 1 0
FA (€ —-— - - — FA [€— FA |[& CarryIn

Carry Out

What is the performance of this approach?
?2 Slow due to long propagation paths
72 Modern systems use more efficient adders

Combinational Circuit — Decoder

Selects one (of many) outputs from a single input

. —> —>
Decoder block diagram))
(black box) —»| Decoder [—>
n Inputs . o 2" outputs
— —>

Combinational Circuit — Decoder

Implementation of a 2 input to 4 output decoder
lfx=0andy=1, <~ | |>o [o }
which output line
is enabled? ¢ Djy

Common decoder application: Memory address
decoders

7 ninputs can select any of 2" locations.

Example: Suppose we build a memory that stores
2048 bytes using several 64x4 RAM chips

72 How do we determine which RAM chip to use when
reading/writing a particular address?

Build this:

Full Memory

2048 total bytes
(or 2048 = 211 addresses,
1 byte per address)

With many of these:

mie LI

Data wires Address wires

(8) (11)

64x4 RAM Chip
64 (or 2°) locations
4 bits per location

me

Data wires Address wires

(4) (6)

To get 2048 total addresses, we need
2048/64 = 32 banks of RAM chips

To make each address contains one byte (8 bits) we
must access 8/4 = 2 chips in parallel

? Therefore, a total of 32*2 = 64 RAM chips
? Picture an array of RAM chips

32 rows

2 columns

To determine which of 32 possible banks to read data
from, a 5-t0-32 decoder is needed (2° = 32)

Combinational Circuit — Multiplexer

A multiplexer selects a single
output from several inputs

Which input is chosen?

?2 Selected by the value on the
multiplexer’s control lines

To select from n inputs, log,n
control lines are needed.

I,—>
I,—>»
I, —>

I;—>»

Multiplexer |Output
—>
(MUX)
S1 So

Control lines

Combinational Circuit — Multiplexer

Implementation of a 4-to-1 multiplexer

S . —\ 515013
L—|2X3 |/
S, | S$,801,
LDQ » Output
¢ g130:[1
Ij
I, ' _\513010 IfS,=1andS; =0,
which input is
I, |
I transferred to the
0

output?

26

Combinational Circuit — Shifter

S

This shifter moves ! I3 I, 1y g

the bits of a 4-bit Y \

input one position to
the left or right

If S=0, in which I I_.—I I r.—l
aresonsone () L) U U
— | | |

03 0, 04 O

Combinational Circuits

Does the output of a combinational circuit change
instantly when the input changes?

?” No —takes a tiny (but measurable) length of time
Electrical signals in a wire have a finite speed
7 A transistor takes a finite time to change state

28

Sequential Circuits

Computer Systems and Networks Fall 2011

Sequential Circuits

Combinational logic circuits
7 Immediately apply Boolean function to set of inputs

? This does not work for all problems!

What if we want a circuit that changes its value
based on (a) its inputs and (b) its current state”?

2 These circuits have to “remember” their current
state

2 Thisis a sequential logic circuit

Sequential Circuits

Sequential logic circuits require a means by which
events can be sequenced

2 The clock!

What is a clock?
2 Not a “wall clock”

Sequential Circuits

State changes occur in sequential circuits only when
the clock “ticks”

Circuits can change state on the:

7 Rising edge, or

7 Falling edge, or

2 When the clock pulse reaches its highest voltage

Falling High Low

Fdge’ - ‘/Edg_ _/ /_

Sequential Circuits

Edge-triggered circuits

?” Change state on the rising edge or falling edge of
the clock pulse

Level-triggered circuits

2 Change state when the clock voltage reaches its
highest or lowest level

Falling High Low

Fdge’ - ‘/Edg_ _/ /_

Sequential Circuits

How can we make a circuit that uses its current
output in deciding its next output?

? Feedback —loop an output back to the input

Example:
2 1fQis0itwill always be O
2 IfQis1,itwillalways be 1

lDO_Dle

Sequential Circuits — SR Flip-flop

SR Flip-flop employs feedback
A The “SR” stands for set/reset

? Basic storage element

Internal design (clock not shown): Block diagram (with clock):
S —
Q S Q
> C
2 Q
R Q

Sequential Circuits — SR Flip-flop

What does the truth table of an SR flip-flop look
like?

72 Q(t) is the value of the output Q at time t
72 Q(t+1) is the value of Q after the next clock pulse

Q(t+1)

Ol

R

0 @(t) (no change)
1 0O (reset to 0)
0
1

1l (set to 1)
undefined

PR PR OO W

Sequential Circuits — SR Flip-flop

The SB flip-flop actuaIIY has Present Next
three inputs: S, R, and its State State
current output, Q

S R Q(t) Q(t+1)

More complete truth table O 0 0 0
2 Two undefined values! 0O O 1 1
72 SR flip-flop unstable when g 1 (1) g
se.t and “reset” are both 1 0 5 i
active T 1 1

1 1 0 undefined

1 1 1 undefined

Sequential Circuits — JK Flip-flop

JK flip-flop removes this risk

? Ensures that both “set” and “reset” inputs to an SR
flip-flop will never both be 1

72 “JK” named after Jack Kilby

2000 Nobel Prize winner for invention of the
integrated circuit while at Texas Instruments

J Qq
>C
K Q

Sequential Circuits — JK Flip-flop

JK flip-flop is really just a
wrapper around a basic SR
flip-flop

JK is stable for all inputs

72 J=K=1:Toggle output

Q(t+1)

@(t) (no change)
O (reset to 0)
1l (set to 1)

Q(t)

R R OO §
R ORr O R

Sequential Circuits — D Flip-flop

D Flip-Flop
72 Another modification of the SR flip-flop
? D=Data (but | remember D=Delay...)

Output of the flip-flop remains the same during
subsequent clock pulses

#2 Output changes only when D changes

D S Q — D Q(t+1)
—pC 0 0

—[>0—R Q p—ro 1 1

Sequential Circuits — D Flip-flop

D flip-flop is the fundamental circuit of computer

memory
? Usually illustrated using the block diagram shown
below
D Q —— D Q(t+1)

