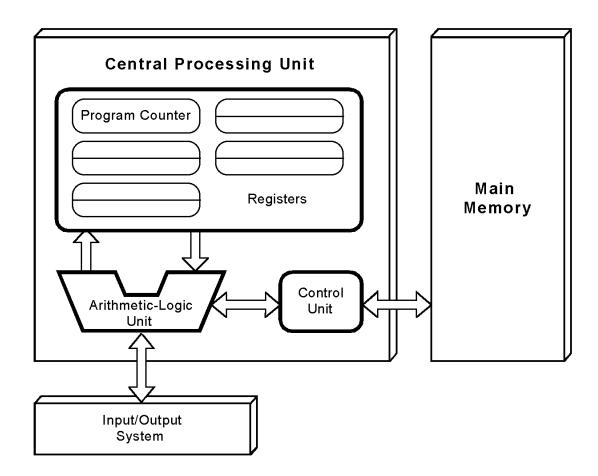


Computer Systems and Networks

ECPE 170 – Jeff Shafer – University of the Pacific

Binary Numbers

Recap - von Neumann Model



How does this run a stored program?

Objectives

- **7** Chapter 2 in textbook
- Digital computers
 - How do we represent numbers and characters?
 - How do we convert between human and computer representations?
 - i.e. convert between base 10 and 2
 - Why do errors occur in computation?
 - Overflow?
 - **7** Truncation?
 - How do we detect and correct errors?

Basics

- A **bit** is the most basic unit of information in a computer
 - → It is a state of "on" or "off" in a digital circuit.
 - Sometimes these states are "high" or "low" voltage instead of "on" or "off"

0

1

Basics

- A byte is a group of eight bits
 - A byte is the **smallest possible addressable unit** of computer storage
 - Addressable?
 - A particular byte can be retrieved according to its location in memory

01101001

Basics

- A word is a contiguous group of bytes
 - Words can be any number of bits or bytes
 - **→** Word sizes of 16, 32, or 64 bits are most common
 - In a word-addressable system, a word is the smallest addressable unit of storage

01101001 11001010 01110001 01000111

- Binary (base 2) numbers
 - Each position represents a power of 2
 - 7 Two digits: 0, 1
- Decimal (base 10) numbers
 - Each position represents a power of 10
 - **7** Ten digits: 0 9
- Hexadecimal (base 16) numbers
 - **7** Each position represents a power of 16
 - **♂** Sixteen digits: 0-9 and A-F

The decimal number 947 in powers of 10 is:

$$9 \times 10^2 + 4 \times 10^1 + 7 \times 10^0$$

The decimal number 5836.47 in powers of 10 is:

$$5 \times 10^3 + 8 \times 10^2 + 3 \times 10^1 + 6 \times 10^0 + 4 \times 10^{-1} + 7 \times 10^{-2}$$

■ The binary number 11001 in powers of 2 is:

$$1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 16 + 8 + 0 + 0 + 1 = 25$$

- When the radix of a number is something other than 10, the base is denoted by a subscript.
 - Sometimes, the subscript 10 is added for emphasis:
 - $71001_2 = 25_{10}$

- This system works for any base (aka *radix*) you want
 - Base 3, Base 19, etc...
- Any **integer** quantity can be represented **exactly** using any base
- Why do computers use base 2?
- Why do (modern) humans use base 10?
 - Babylonians used base 60
 - Mayans used base 20

- Where do we use binary numbers beyond homework problems?
- Understanding operation of computer components
 - → How big is the memory system?
 - How does the processor do arithmetic?
- Designing new processors
 - Instruction set architecture the language of the machine
- Assembly programming
 - Particularly if you convert from assembly code to the binary executable by hand

Converting Between Bases

Converting Between Bases

- The following methods work for converting between *arbitrary* bases
 - We'll focus on converting to/from **binary** because it is the basis for digital computer systems
- Two methods for radix conversion
 - Subtraction method
 - Easy to follow but tedious!
 - Division remainder method
 - Much faster

Subtraction Method: Decimal to Binary

2 ⁰	1
2 ¹	2
2 ²	4
2 ³	8
24	16
2 ⁵	32
2 ⁶	64
27	128
28	256
2 ⁹	512
2 ¹⁰	1024
211	2048

Convert 789₁₀ to binary (base 2)

Largest number that fits in 789? (512)	789 – 512 = 277	1xxxxxxxxx
Does 256 fit in 277? (yes)	277 – 256 = 21	11xxxxxxxx
Does 128 fit in 21? (no)	21	110xxxxxxx
Does 64 fit in 21? (no)	21	1100xxxxxx
Does 32 fit in 21? (no)	21	11000xxxxx
Does 16 fit in 21? (yes)	21 – 16 = 5	110001xxxx
Does 8 fit in 5? (no)	5	1100010xxx
Does 4 fit in 5? (yes)	5-4 = 1	11000101xx
Does 2 fit in 1? (no)	1	110001010x
Does 1 fit in 1? (yes)	1-1= <mark>0</mark>	1100010101

Computer Systems and Networks

Division Method: Decimal to Binary

Convert 789₁₀ to binary

789 / 2 = 394.5	Remainder of 1
394 / 2 = 197	Remainder of 0
197 / 2 = 98.5	Remainder of 1
98 / 2 = 49	Remainder of 0
49 / 2 = 24.5	Remainder of 1
24 / 2 = 12	Remainder of 0
12 / 2 = 6	Remainder of 0
6 / 2 = 3	Remainder of 0
3 / 2 = 1.5	Remainder of 1
1/2 = 0.5 (stop when <1)	Remainder of 1
1	11' 1- h' (h 2)

Read **bottom** to **top**:

 $789_{10} = 1100010101_2$

Divide by 2 since we're converting to binary (base 2)

Binary to Decimal

2 ⁰	1
2 ¹	2
2 ²	4
2 ³	8
24	16
2 ⁵	32
2 ⁶	64
2 ⁷	128
28	256
2 ⁹	512
2 ¹⁰	1024
211	2048

Convert 1011000100₂ to decimal

$$= 1x2^9 + 0x2^8 + 1x2^7 + 1x2^6 + 0x2^5 + 0x2^4 + 0x2^3 + 1x2^2 + 0x2^1 + 0x2^0$$

$$= 512 + 128 + 64 + 4$$

Binary to Decimal (Faster!)

Convert 1011000100₂ to decimal

1 011000100 ₂	0*2 + 1 = 1
1 0 11000100 ₂	1*2 + 0 = 2
10 1 1000100 ₂	2*2 + 1 = 5
101 1 000100 ₂	5*2 + 1 = 11
10110001002	11*2 + <mark>0</mark> = 22
10110001002	22*2 + 0 = 44
10110001002	44*2 + 0 = 88
1011000 1 00 ₂	88*2 + 1 = 177
10110001002	177*2 + 0 = 354
101100010 <mark>0</mark> 2	354*2 + 0 = 708

Double your current total and add new digit

Range

- What is the smallest and largest 8-bit unsigned binary number?
 - **₹** XXXXXXXXX
 - **Smallest** = $000000000_2 = 0$
 - 7 Largest = 111111111_2 = **255**

Converting Between Bases

- What about fractional values?
 - Fractional values can be approximated in all base systems
 - No guarantee of finding an exact representations under all radices
- Example of an "impossible" fraction:
 - The quantity ½ is exactly representable in the binary and decimal systems, but is not in the ternary (base 3) numbering system

Converting Between Bases

- Fractional values are shown via nonzero digits to the right of the decimal point ("radix point")
 - These represent negative powers of the radix:

$$0.47_{10} = 4 \times 10^{-1} + 7 \times 10^{-2}$$

$$0.11_2 = 1 \times 2^{-1} + 1 \times 2^{-2}$$

$$= \frac{1}{2} + \frac{1}{4}$$

$$= 0.5 + 0.25 = 0.75$$

Subtraction Method: Decimal to Binary

Convert 0.8125₁₀ to binary

2-1	0.5
2-2	0.25
2-3	0.125
2-4	0.0625
2 -5	0.03125
2 -6	0.015625

Does 0.5 fit in 0.8125? (yes)	0.8125-0.5 = 0.3125	.1
Does 0.25 fit in 0.3125? (yes)	0.3125-0.25 = 0.0625	.11
Does 0.125 fit in 0.0625? (no)	0.0625	.110
Does 0.0625 fit in 0.0625? (yes)	0.0625-0.0625 =	.1101

Stop when you reach 0 fractional parts remaining (or you have enough binary digits)

Multiplication Method: Decimal to Binary

Convert 0.8125₁₀ to binary

1 (whole number)
1
0 (no whole number)
1

Stop when you reach 0 fractional parts remaining (or you have enough binary digits)

Read top to bottom:

$$0.8125_{10} = .1101_{2}$$

Hexadecimal Numbers

- Computers work in binary internally
- Drawback for humans?
 - Hard to read long strings of numbers!
 - **Example:** $11010100011011_2 = 13595_{10}$
- For compactness and ease of reading, binary values are usually expressed using the **hexadecimal** (base-16) numbering system

Hexadecimal Numbers

- The hexadecimal numbering system uses the numerals 0 through 9 and the letters A through F
 - 7 The decimal number 12 is C_{16}
 - 7 The decimal number 26 is $1A_{16}$
- It is easy to convert between base 16 and base 2, because $16 = 2^4$
- To convert from binary to hexadecimal, group the binary digits into sets of four

- A = 10
- B = 11
- C = 12
- D = 13
- E=14
- F=15

Converting Between Bases

Using groups of 4 bits, the binary number 11010100011011₂ (13595₁₀) in hexadecimal is:

Careful!

If the number of bits is not a multiple of 4, pad on the left with zeros.

Thus, <u>safest</u> to start at the right and work towards the left!

Signed Integers

- To date we have only examined unsigned numbers
- Used in a variety of programs and system functions
 - Memory addresses are always unsigned
 - Hard drive block addresses are always unsigned
- But some (picky) programmers wanted to represent negative numbers too!
- Ideas on how we might do this?

- To represent signed integers, computer systems use the highorder bit to indicate the sign
 - 0xxxxxxxx = Positive number
 - 1xxxxxxxx = Negative number

 Value of the number

High order bit / Most significant bit

- What do we lose compared to unsigned numbers?
 - **Range!** With the same number of bits, unsigned integers can express twice as many "positive" values as signed numbers
- Design challenge How to interpret the value field?

- There are three ways in which signed binary integers may be expressed:
 - Signed magnitude
 - One's complement
 - Two's complement
- In an 8-bit word, signed magnitude representation places the **absolute value** of the number in the 7 bits to the right of the sign bit.

Examples of 8-bit signed magnitude representation:

Sign Bit Magnitude

- Computers perform arithmetic operations on signed magnitude numbers in much the same way as humans carry out pencil and paper arithmetic.
 - Ignore the signs of the operands while performing a calculation
 - Apply the appropriate sign after calculation is complete

Binary addition is easy:

$$7 0 + 0 = 0$$

$$70 + 1 = 1$$

$$71 + 0 = 1$$

$$71 + 1 = 10$$

- The simplicity of this system makes it possible for digital circuits to carry out arithmetic operations
- How do these rules work with *signed magnitude* numbers?

- Example: using 8-bit signed magnitude binary arithmetic, find
 75 + 46
- Convert 75 and 46 to binary
- Arrange as a sum, but separate the (positive) sign bits from the magnitude bits

```
0 1001011
0 + 0101110
```

- Example: using 8-bit signed magnitude binary arithmetic, find
 75 + 46
- Just as in decimal arithmetic, we find the sum starting with the rightmost bit and work left.

- Example: using 8-bit signed magnitude binary arithmetic, find
 75 + 46
- In the second bit, we have a carry, so we note it above the third bit.

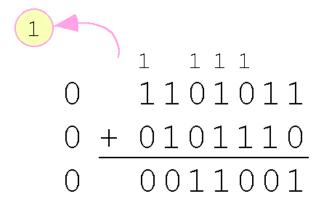
$$0 \quad 1001011 \\ 0 + 0101110 \\ \hline 01$$

- Example: using 8-bit signed magnitude binary arithmetic, find
 75 + 46
- The third and fourth bits also give us carries.

- Example: using 8-bit signed magnitude binary arithmetic, find
 75 + 46
- Once we have worked our way through all eight bits, we are done.

In this example, I picked two values whose sum would fit into 7 bits (leaving the 8th bit for the sign). If the sum doesn't fit into 7 bits, we have a problem.

- Example: using 8-bit signed magnitude binary arithmetic, find 107 + 46.
- The carry from the seventh bit overflows and is discarded no room to store it!
- We get an erroneous result: 107 + 46 = 25.



No magic solution to this overflow problem – you need more bits! (or a smaller number)

- How do I know what sign to apply to the *signed magnitude* result?
 - Works just like the signs in pencil and paper arithmetic

Addition rules

- If the signs are the same, just add the absolute values together and use the same sign for the result
- the signs are different, use the sign of the larger number. Subtract the larger number from the smaller

- Example: Using signed magnitude binary arithmetic, find -46 + -25.
- Because the signs are the same, all we do is add the numbers and supply the negative sign when finished

- Mixed sign addition (aka really subtraction) is done the same way
 - Example: Using signed magnitude binary arithmetic, find 46 + -25.
- The sign of the result is the sign of the larger (here: +)
 - Note the "borrows" from the second and sixth bits.

- Strengths
 - Signed magnitude is easy for people to understand
- Drawbacks
 - Makes computer hardware more complicated / slower
 - Have to compare the two numbers first to determine the correct sign and whether to add or subtract
 - Has two different representations for zero
 - Positive zero and negative zero
- We can **simplify computer hardware** by using a *complement* system to represent numbers

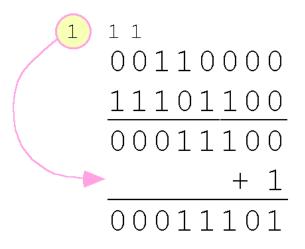
8-bit *one's complement* representation:

7 + 3 is: 00000011

- 3 is: 11111100 (just invert all the bits!)

- In one's complement representation, as with signed magnitude, negative values are indicated by a 1 in the high order bit
- Complement systems are useful because they eliminate the need for subtraction just complement one and add them together!

- With one's complement addition, the carry bit is "carried around" and added to the sum.
- Example: Using one's complement binary arithmetic, find 48 + -19 = 29



We note that 19 in binary is 00010011 so -19 in one's complement is: 11101100

- Although the "end carry around" adds some complexity, one's complement is simpler to implement than signed magnitude
- Still one disadvantage
 - Positive zero and negative zero
- Solution? Two's complement representation
 - Used by all modern systems

- ▼ To express a value in two's complement representation:
 - If the number is **positive**, just convert it to binary and you're **done**
 - If the number is **negative**, find the **one's complement** of the number (i.e. invert bits) and then **add 1**
- **Example:**
 - In 8-bit binary, 3 is: 0000011 (notice how nothing has changed!)
 - -3 using one's complement representation is:
 - Adding 1 gives us -3 in two's complement form: 11111101

- With two's complement arithmetic, all we do is add the two binary numbers and discard any carries from the high order bit
- Example: Using two's complement binary arithmetic, find 48 + -19 = 29

48 in binary is: 00110000

19 in binary is: 00010011,

- -19 using one's complement is: 11101100,
- -19 using two's complement is: 11101101.

Reminders

For positive numbers, the *signed-magnitude*, *one's* complement, and *two's* complement forms are all **the same**!

In *one's complement / two's complement* form, you only need to modify the number if it is **negative**!

Range

- What is the smallest and largest 8-bit two's complement number?
 - **₹** XXXXXXXXX
 - **Smallest (negative)** $# = 100000000_2 = -128$
 - **T** Largest (positive) $\# = 011111111_2 = 127$

Overflow

- **Overflow**: The result of a calculation is too large or small to store in the computer
 - We only have a finite number of bits available for each number
- Can we prevent overflow? No
- Can we detect overflow? Yes!
 - Easy to detect in complement arithmetic

Overflow Detection

- **Example:**
 - Using two's complement binary arithmetic, find 107 + 46
- We see that the nonzero carry from the seventh bit overflows into the sign bit, giving us the erroneous result: 107 + 46 = -103.

But overflow into the sign bit does not always mean that we have an error

Overflow Detection

Example:

- Using two's complement binary arithmetic, find 23 + -9
- We see that there is carry into the sign bit and carry out. The final result is correct: 23 + -9 = 14

Rule for detecting signed two's complement overflow:

If "carry in" and "carry out" of the sign bit <u>differ</u> → overflow

If "carry in" and "carry out" of the sign bit are <u>same</u> → no overflow

Overflow versus Carry Out

- Processors typically have "flags" (error signals) for both carry-out and overflow
 - These are independent ideas (even though I often get them confused...)
- For unsigned numbers
 - Carry-out is the only flag used (carry-out past the leftmost bit)
- For signed numbers
 - Carry-out flag is not important to programmer
 - Overflow flag is!

Overflow versus Carry

Using Two's Complement (signed) Numbers

Expression	Carry? (out leftmost bit)	Overflow? (too big to represent)	Correct Result?
0100 + 0010 0110	No	No —	→ Yes
0100 + 0110 1010	No	Yes ——	→ No
1100 + 1110 1010	Yes	No —	→ Yes
1100 + 1010 0110	Yes	Yes ——	→ No

Homework #1

- Assigned today!
 - http://ecs-network.serv.pacific.edu/ecpe-170
- Due Next Class Period (i.e. Tuesday)
 - Class design: Smaller but more frequent assignments
- Topics
 - Number conversion, signed/unsigned representation
 - 50-word sentence problem
- Turn in homework via Sakai
 - Either an attachment or inline on the web form

Next Class

- **™** More Numbers! (last day of numbers)
 - Floating-point numbers
 - Floating-point errors
 - Range, precision, and accuracy

Bit Shift Shortcuts

- Easy way to multiply by 2
 - Shift left by 1 position and insert a 0 in the rightmost be
- Easy way to divide by 2
 - → Shift right by 1 position (and copy the sign bit)
- Multiply/divide by 4?
 - **♂** Shift by 2 positions
- Multiply/divide by 8?
 - Shift by 3 positions

Bit Shift Shortcuts

- Multiplication example (using 8-bit signed two's complement numbers)
 - **7** 11 * 2
 - = 00001011 * 2
 - = 00010110 (shifted left one place)
 - = 22

Sign bit is unchanged, so the value is valid

To multiply 11 by 4, simply perform a left shift twice

Bit Shift Shortcuts

- Division example (using 8-bit signed two's complement numbers)
 - 12 / 2
 = 00001100 / 2
 = 00000110 (shifted right one place and copying the sign bit)
 = 6

To divide 12 by 4, right shift twice