.

Computer Systems and Networks

ECPE 170 — Jeff Shafer — University of the Pacific

Binary Numbers

Recap - von Neumann Model

Central Processing Unit

4 Y

[Program Counter) ()
4 A4 A\
N J J
() Registers

\. J

Arithmetic-Logic
Unit

Control
Unit

Main
Memory

4}
J

Input/Output
System

How does this run
a stored program?

Objectives

Chapter 2 in textbook

Digital computers
72 How do we represent numbers and characters?

72 How do we convert between human and computer
representations?

i.e. convert between base 10 and 2

2 Why do errors occur in computation?
Overflow?
Truncation?

2 How do we detect and correct errors?

Basics

A bit is the most basic unit of information in a
computer

7 ltis astate of “on” or “off” in a digital circuit

72 Sometimes these states are “high” or “low” voltage
instead of “on” or “off”

Basics

7 A byte is a group of eight bits

72 A byte is the smallest possible addressable unit of
computer storage

2 Addressable?

7 A particular byte can be retrieved according to its
location in memory

01101001

Computer Systems and Networks Fall 2011

Basics

A word is a contiguous group of bytes
2 Words can be any number of bits or bytes
A Word sizes of 16, 32, or 64 bits are most common

72 Inaword-addressable system, a word is the smallest
addressable unit of storage

01101001 11001010 01110001 01000111

Positional Numbering Systems

Binary (base 2) numbers
? Each position represents a power of 2
72 Twodigits: 0, 1

Decimal (base 10) numbers

? Each position represents a power of 10
2 Tendigits:0-9

Hexadecimal (base 16) numbers
? Each position represents a power of 16
72 Sixteen digits: 0-9 and A-F

Positional Numbering Systems

The decimal number 947 in powers of 10 is:

9%x102+4x 101 +7 x 100

The decimal number 5836.47 in powers of 10 is:

5x103+8x10%2+3 x10Y+6x 100
+4x101+7 x 102

Positional Numbering Systems

The binary number 11001 in powers of 2 is:

1x2%4+1x23+0x%x22 +0x21+1x29
= 16 + 8 + 0 + 0 + 1 = 25

When the radix of a number is something other
than 10, the base is denoted by a subscript.

72 Sometimes, the subscript 10 is added for emphasis:
2 11001,=25,,

Positional Numbering Systems

This system works for any base (aka radix) you want
2 Base 3, Base 19, etc...

Any integer quantity can be represented exactly
using any base

Why do computers use base 2?

Why do (modern) humans use base 10?
Babylonians used base 60
Mayans used base 20

Positional Numbering Systems

Where do we use binary numbers beyond homework
problems?

Understanding operation of computer components
2 How bigis the memory system?
72 How does the processor do arithmetic?

Designing new processors

7 Instruction set architecture — the language of the
machine

Assembly programming

? Particularly if you convert from assembly code to the
binary executable by hand

12

Converting Between Bases

Computer Systems and Networks Fall 2011

Converting Between Bases

The following methods work for converting
between arbitrary bases

2 We'll focus on converting to/from binary because it
is the basis for digital computer systems

Two methods for radix conversion
?2 Subtraction method

Easy to follow but tedious!
Division remainder method

Much faster

Subtraction Method: Decimal to Binary

Convert 789,, to binary (base 2)

20 1

2! 2 Largest number that fitsin 789 —512 =277 1XXXXXXXXX
22 4 789? (512)

23 8 Does 256 fitin 277? (yes) 277-256=21 11XXXXXXXX
24 16 Does 128 fit in 21? (no) 21 110xXXXXXXX
2° 32 Does 64 fit in 21? (no) 21 1100xxXxXxXxXX
26 64 Does 32 fitin 21? (no) 21 11000xxxxxX
27 128 Does 16 fit in 217? (yes) 21-16=5 110001xxxx
28 256 Does 8 fit in 5? (no) 5 1100010xxx
2° 512 Does 4 fit in 5? (yes) 5-4=1 11000101xx
210 1024 Does 2 fitin 1? (no) 1 110001010x

211 2048 Does 1 fitin 1? (yes) 1-1=0 1100010101

Division Method: Decimal to Binary

Convert 789,, to binary

789 /2=3945 Remainder of 1
394 /2 =197 Remainder of O
197 /2 =98.5 Remainder of 1
98 /2=49 Remainder of 0
49 /2 =245 Remainder of 1
24 /2 =12 Remainder of 0
12/2=6 Remainder of O
6/2=3 Remainder of O
3/2=1.5 Remainder of 1

Read bottom to top:
1/2=0.5 (stop when <1) Remainder of 1 789,,=1100010101,

Divide by 2 since we’re converting to binary (base 2)

Binary to Decimal

Convert 1011000100, to decimal

20 1
21 2
52 4 =1x2%9 + Ox28 + 1x27 + 1x2° + Ox2° + Ox2%4 + Ox23 + 1x22 + 0x21 + 0x2°
23 8 =512+ 128+ 64 + 4
24 16
=708
2° 32
26 64
27 128
28 256
2° 512
210 1024

211 2048

Binary to Decimal (Faster!)

Convert 1011000100, to decimal

1011000100, 0*2+1=1 Double your current
1011000100, 1¥2+0=2 g‘i’;?t'a”d add new
1011000100, 2*2+1=5

1011000100, 5*2+1=11

1011000100, 11*2+0 =22

1011000100, 22*2+0=44

1011000100, 44%2 + 0 = 88

1011000100, 88*%2 +1=177

1011000100, 177*2+0=354

1011000100, 354*2 + 0 =708

Range

What is the smallest and largest 8-bit unsigned
binary number?

A XXXXXXXX,

A Smallest= 00000000,=0
A largest=11111111,=255

Converting Between Bases

What about fractional values?

? Fractional values can be approximated in all base
systems

72 No guarantee of finding an exact representations
under all radices

Example of an “impossible” fraction:

72 The quantity % is exactly representable in the
binary and decimal systems, but is not in the ternary
(base 3) numbering system

Converting Between Bases

Fractional values are shown via nonzero digits to
the right of the decimal point (“radix point”)

72 These represent negative powers of the radix:
0.47,,= 4x 101+ 7 x 107

011, = 1x21+1x2?

= V2 + N
= 05 + 0.25=10.75

Subtraction Method: Decimal to Binary

Convert 0.8125,, to binary

2-1 0.5 Does 0.5 fit in 0.81257? 0.8125-0.5 = 1
22 0.25 (ves) 0.3125
. ,) _

53 - (QIZS 0.25 fitin 0.31257 8:3;32 0.25 J11
z 0.0625 Does 0.125 fitin 0.0625? 0.0625 .110
25 0.03125 (no)
2° 0.015625 Does 0.0625 fit in 0.0625? 0.0625-0.0625= .1101

(yes) 0

|

Stop when you reach 0 fractional parts remaining
(or you have enough binary digits)

Multiplication Method: Decimal to Binary

Convert 0.8125,, to binary

0.8125 * 2 =1.625 1 (whole number)

0.625 *2 =1.25 1
0.25*2=0.5 0 (no whole number)
0.5*%2=1.0 1
X Read top to bottom:
Stop when you reach O fractional 0.8125,,= .1101,

parts remaining (or you have enough
binary digits)

Hexadecimal Numbers

Computers work in binary internally

Drawback for humans?
? Hard to read long strings of numbers!
A Example: 11010100011011,=13595;,

For compactness and ease of reading, binary values
are usually expressed using the hexadecimal
(base-16) numbering system

Hexadecimal Numbers

The hexadecimal numbering system uses the
numerals 0 through 9 and the letters A through F

A=10 2 The decimal number 12 is C;,

B=11 ? The decimal number 26 is 1A,

C=12

D=13 It is easy to convert between base 16 and base 2,
E=14 because 16 = 24

F=15

To convert from binary to hexadecimal, group the
binary digits into sets of four

Converting Between Bases

Using groups of 4 bits, the binary number
11010100011011,(13595,,) in hexadecimal is:

0011 0101 0001 1011 careful
If the number of bits is not a
3 S 1 B multiple of 4, pad on the left
with zeros.

Thus, safest to start at the

right and work towards the
left!

26

Signed Integers

Computer Systems and Networks Fall 2011

Signed Integer Representation

To date we have only examined unsigned numbers

Used in a variety of programs and system functions
72 Memory addresses are always unsigned

#2 Hard drive block addresses are always unsigned

But some (picky) programmers wanted to represent
negative numbers too!

Ideas on how we might do this?

Signed Integer Representation

To represent signed integers, computer systems use the high-
order bit to indicate the sign

P Oxxxxxxxx = Positive number
7 1xxxxxxxx = Negative number

|]
I T Value of the number
High order bit /
Most significant bit

What do we lose compared to unsigned numbers?

7 Range! With the same number of bits, unsigned integers can
express twice as many “positive” values as signed numbers

Design challenge — How to interpret the value field?

Signed Integer Representation

There are three ways in which signed binary
integers may be expressed:

72 Signed magnitude
72 One’s complement

2 Two’s complement

In an 8-bit word, signed magnitude representation
places the absolute value of the number in the 7
bits to the right of the sign bit.

Signed Integer Representation

Examples of 8-bit signed magnitude representation:
A2 +3= 100000011
2 3= 110000011

Sign Bit Magnitude
Computers perform arithmetic operations on signed

magnitude numbers in much the same way as humans
carry out pencil and paper arithmetic.

7 lgnore the signs of the operands while performing a
calculation

72 Apply the appropriate sign after calculation is complete

Signed Integer Representation

Binary addition is easy:

A2 0+0=0
2 0+1=1
2 1+0=1
2 1+1=10

The simplicity of this system makes it possible for
digital circuits to carry out arithmetic operations

How do these rules work with signed magnitude
numbers?

Signed Integer Representation

Example: using 8-bit signed 0 1001011

magnitude binary O+ 0101110
arithmetic, find

75+ 46

Convert 75 and 46 to binary

Arrange as a sum, but
separate the (positive) sign
bits from the magnitude bits

Signed Integer Representation

Example: using 8-bit signed 0 1001011
magnitude binary 04+ 0101110
arithmetic, find 1
75 + 46

Just as in decimal arithmetic,
we find the sum starting
with the rightmost bit and
work left.

Signed Integer Representation

Example: using 8-bit signed 0 1001 (l) 11
magnitude binary 0O+ 0101110
arithmetic, find 01
75 + 46

In the second bit, we have a

carry, so we note it above
the third bit.

Signed Integer Representation

111
Example: using 8-bit signed 0 1001011
magnitude binary 04+ 0101110
arithmetic, find 1001

75+ 46

The third and fourth bits also
give us carries.

Signed Integer Representation

111

Example: using 8-bit signed 0 1001011
magnitude binary 04+ 0101110
arithmetic, find 0 1111001

75+ 46

Once we have worked our
way through all eight bits,
we are done.

In this example, | picked two values whose sum would fit
into 7 bits (leaving the 8" bit for the sign). If the sum
doesn’t fit into 7 bits, we have a problem.

Signed Integer Representation

Example: using 8-bit signed
magnitude binary 1
arithmetic, find 107 + 46. 1 111

9 1101011
The carry from the seventh 0+ 0101110
bit overflows and is

discarded — no room to store 0 0011001
it!

No magic solution to this
We get an erroneous result: " X]
107 + 46 =>5_ overtlow problem —you nee

more bits! (or a smaller
number)

Signed Integer Representation

How do | know what sign to
apply to the signed magnitude
result?

2 Works just like the signs in
pencil and paper arithmetic

Addition rules

7 If the signs are the same,
just add the absolute values
together and use the same
sign for the result

7 If the signs are different, use
the sign of the larger
number. Subtract the larger
number from the smaller

11

1 01011160
1+ 0011001
1 1000111

Example: Using signed
magnitude binary arithmetic,
find -46 + -25.

Because the signs are the same,
all we do is add the numbers
and supply the negative sign
when finished

Signed Integer Representation

Mixed sign addition (aka

really subtraction) is done 0 2 0 2
the same way 0 001140
? Example: Using signed 1T + O011001

magnitude binary 0 0010101

arithmetic, find 46 + -25.

The sign of the result is the
sign of the larger (here: +)

72 Note the “borrows” from
the second and sixth bits.

Signed Integer Representation

Strengths
72 Signed magnitude is easy for people to understand

Drawbacks

A Makes computer hardware more complicated / slower

Have to compare the two numbers first to determine the
correct sign and whether to add or subtract

72 Has two different representations for zero
Positive zero and negative zero

We can simplify computer hardware by using a
complement system to represent numbers

Signed Integer Representation

8-bit one’s complement representation:
2 +3is: 00000011
72 -3is: 11111100 (justinvert all the bits!)

In one’s complement representation, as with signed
magnitude, negative values are indicated by a 1 in
the high order bit

Complement systems are useful because they
eliminate the need for subtraction — just
complement one and add them together!

Signed Integer Representation

With one’s complement

addition, the carry bit is 1) 11

“carried around” and added 00110000

to the sum. 11101100
00011100

Example: Using one’s
complement binary
arithmetic, find 48 + -19 = 29

+ 1
00011101

We note that 19 in binary is 00010011
so -19 in one’s complementis: 11101100

Signed Integer Representation

Although the “end carry around” adds some
complexity, one’s complement is simpler to
implement than signed magnitude

Still one disadvantage

? Positive zero and negative zero

Solution? Two’s complement representation
72 Used by all modern systems

Signed Integer Representation

To express a value in two’s complement representation:

72 If the number is positive, just convert it to binary and
you’re done

72 If the number is negative, find the one’s complement of
the number (i.e. invert bits) and then add 1

Example:

72 In 8-bit binary, 3 is:
00000011 (notice how nothing has changed!)

2 -3 using one’s complement representation is:
11111100

2 Adding 1 gives us -3 in two’s complement form:
11111101

Signed Integer Representation

With two’s complement

arithmetic, all we do is add

the two binary numbers and : L

discard any carries from the VOL10000
+ 11101101

high order bit
00011101

Example: Using two’s
complement binary
arithmetic, find 48 + -19 = 29

48 in binary is: 00110000

19 in binary is: 00010011,
-19 using one’s complementis: 11101100,
-19 using two’s complement is: 11101101.

Reminders

For positive numbers, the signed-magnitude, one’s
complement, and two’s complement forms are all
the same!

In one’s complement [/ two’s complement form, you
only need to modify the number if it is negative!

Computer Systems and Networks Fall 2011

Range

What is the smallest and largest 8-bit two’s
complement number?

” XXXXXXXX,
? Smallest (negative) #=10000000, =-128
A Llargest (positive) #=01111111, =127

Overflow

Overflow: The result of a calculation is too large or
small to store in the computer

72 We only have a finite number of bits available for
each number

Can we prevent overflow? No

Can we detect overflow? Yes!

? Easy to detect in complement arithmetic

Overflow Detection

Example:

2 Using two’s complement 191 111
binary arithmetic, find 01101011
107+46 + 00101110

10011001

We see that the nonzero
carry from the seventh bit
overflows into the sign bit,
giving us the erroneous
result: 107 + 46 = -103.

But overflow into the sign bit does not
always mean that we have an error

Overflow Detection

Example: @ @1 1 111

A Using two’s complement
binary arithmetic, find O O O 1 O 111
23 +-9 + 11110111
72 We see that there is carry O O O O 11" O

into the sign bit and carry
out. The final result is
correct: 23+-9=14

Rule for detecting signed two’s complement overflow:
If “carry in” and “carry out” of the sign bit differ = overflow
If “carry in” and “carry out” of the sign bit are same =2 no overflow

Overflow versus Carry Out

Processors typically have “flags” (error signals) for both
carry-out and overflow

72 These are independent ideas (even though | often get
them confused...)

For unsigned numbers

? Carry-outis the only flag used (carry-out past the leftmost
bit)

For signed numbers

? Carry-out flag is not important to programmer
2 Overflow flag is!

Overflow versus Carry

Using Two’s Complement (signed) Numbers

Carry? Overflow? Correct Result?
(out leftmost bit) (too big to represent)

0100
+ 0010 No No > Yes

0110

0100
+ 0110 No Yes > No
1010

1100
+ 1110 Yes No > Yes
1010

1100
+ 1010 Yes Yes > No
0110

Homework #1

Assigned today!
2 http://ecs-network.serv.pacific.edu/ecpe-170

Due Next Class Period (i.e. Tuesday)
? Class design: Smaller but more frequent assignments

Topics
2 Number conversion, signed/unsigned representation
72 50-word sentence problem

Turn in homework via Sakai
A Either an attachment or inline on the web form

Next Class

More Numbers! (last day of numbers)
7 Floating-point numbers

? Floating-point errors

72 Range, precision, and accuracy

Computer Systems and Networks

55

Fall 2011

Bit Shift Shortcuts

Easy way to multiply by 2
? Shift left by 1 position and insert a 0 in the rightmost
be

Easy way to divide by 2
7 Shift right by 1 position (and copy the sign bit)

Multiply/divide by 4?
? Shift by 2 positions

Multiply/divide by 8?
? Shift by 3 positions

Bit Shift Shortcuts

Multiplication example (using 8-bit signed two’s
complement numbers)
A 11*2

= 00001011 * 2

= 00010110 (shifted left one place)

=22

Sign bit is unchanged, so the value is valid

To multiply 11 by 4, simply perform a left shift twice

Bit Shift Shortcuts

Division example (using 8-bit signed two’s
complement numbers)
2 12/2

= 00001100/ 2
= 00000110 (shifted right one place and copying the

sign bit)
=6

To divide 12 by 4, right shift twice

